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Chapter 1

Introduction

There are different processes that lead to the creation of light in nature. Most
importantly, there is the distinction between stimulated and spontaneous emis-
sion. Stimulated emission leads to laser light, known from CD drives and laser
pointers. Lasers generate light that is typically monochromatic, directional and
coherent. The second main way to generate light is via the process of spon-
taneous emission. One important everyday example of spontaneous emission is
thermal radiation. When the temperature of an object is sufficiently high, it
starts emitting visible light. For instance the sun and light bulbs work this way.
Spontaneous emission can also be generated by electrical excitation, known in
everyday life from the yellow light emitted by street lamps. Fluorescent lamps
generate their light in a two step process. First electrical current generates UV
light, that is converted to visible light by special phosphors. In general, light
that is generated via spontaneous emission is not directional and coherent and
can have a broad spectrum, in contrast to laser light.

Although the term ”spontaneous” in spontaneous emission may sound like a
synonym for ”random”, it is possible to influence the dynamics of spontaneous
emission in a controlled way. By placing an emitter inside or within a wavelength
near a suitable nanostructure the spontaneous emission process can be controlled.
This is the research field of nanophotonics, where the structures are on the wave-
length scale of light. In this thesis several different methods are experimentally
investigated to modify and control the process of spontaneous emission. In this
introduction several important concepts about spontaneous emission and nanos-
tructures are introduced and an outline of this thesis is given.

1.1. Spontaneous emission
The simplest system to show optical activity is a two-level emitter, as depicted
in fig. 1.1. A two-level emitter has a ground state level and an excited state
level that is higher in energy than the ground state. A two-level emitter can
be excited by absorbing a photon with an energy exactly matching the energy
difference between ground and excited states. This extra absorbed quantum of
energy can be radiated away from the emitter by spontaneous emission. The
emission is called spontaneous because there is no way to determine a priori
the moment in time when the photon is emitted after excitation. Before the
introduction of quantum optics, it seemed that this process occurred without
interaction with an electric field. Although some aspects of spontaneous emission
such as Einstein’s coefficients can be explained classically [1], a full description
of spontaneous emission needs quantisation of the light field since this process is
inherently quantum mechanical in nature [2].
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Chapter 1 Introduction

Figure 1.1.: Schematic of a two-level emitter. Light with a particular energy
quantum h̄ω is emitted.

In quantum optics, even vacuum has an energy 1
2 h̄ω per mode. The average

value for the electric field squared is non-zero causing the electric field to fluctuate
around the zero mean value in time. Emitters in the excited state can interact
with this electric field, and as a result make the transition to the lower energy
level upon emitting a photon. Theoretically it can be derived that the decay has
an exponential form when the emitter interacts with a continuum of field modes
[2]. Each individual emission event remains uncertain with no way to determine a
priori how long the emitter will stay in the excited state before emitting a photon.
However, when the process is repeated many times the resulting distribution of
emission decay times will show an exponential function with a characteristic
decay rate γ. This decay rate for dipole transitions is determined by Fermi’s
Golden Rule:[3, 4]

γ(r) =
2π

h̄2

∑
|f〉

|〈f |d̂(r) ·E(r)|i〉|2δ(Ef − Ei) (1.1)

The decay rate γ of a dipole transition with operator d̂ and energy Ei is
determined by summing over all available final states |f〉 with energy Ef . Fermi’s
Golden Rule can be rewritten as [5]

γ(r, ed, ωab) =
πωab
3h̄ε0

|〈a|d̂|b〉|2Nrad(r, ed, ωab) (1.2)

where the expression separates into an atom part depending in the transition
dipole 〈a|d̂|b〉 where |a〉 and |b〉 denote the emitter excited and ground state
wave functions respectively and a field part given by the local radiative density
of states (LDOS) Nrad. The LDOS is a function of position r, dipole orientation
ed and frequency ωab. Although vacuum fluctuations are essentially quantum
mechanical, the LDOS is a classical entity [5].

For an emitter in a homogeneous dielectric, the spontaneous emission rate is
independent of position and orientation and equal to:

γ(ω) =
πd2ω

h̄ε0
Nrad(ω) =

nd2ω3

3πh̄ε0c3
(1.3)
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Modifying the local density of states 1.2

Here the assumption is made that the emitter has the same refractive index as
the medium. In more complicated situations the local field effect must be taken
in to account [6].

1.2. Modifying the local density of states
Since the decay rate of an emitter is determined partly by the immediate sur-
roundings of the emitter via the local density of states, this allows for a method to
control the decay rate of the emitter. Therefore we place it in a controlled envi-
ronment on the scale of the wavelength of light, entering into in the research field
of nanophotonics [7]. In this section, three important nanophotonic environments
are discussed: The interface, the cavity and the photonic crystal.

1.2.1. The interface
Close to an interface between two media with different refractive indices, the local
density of states is modified due to interference of the emitted and reflected light
[8, 9]. This modification of the LDOS has been investigated since the pioneering
experiments by Drexhage in the 1960s, reviewed in [10]. The theoretically sim-
plest situation is that of placing an emitter with a certain dipole orientation close
to a perfect metal. The local density of states as a function of distance to the
interface is shown in fig. 1.2. A dipole oriented parallel to the interface will can-
cel with its image dipole at the interface, giving LDOS = 0. For dipoles oriented
perpendicular to the interface the image dipole is added to the dipole, giving a
doubling of the LDOS. Further away from the interface oscillations occur that are
caused by interference of the light fields with a period given by the wavelength of
the light. More than a few wavelengths away from the interface these interference
effects are no longer sufficiently strong to modify the LDOS, resulting in a con-
stant value independent of dipole orientation. There is no resonance condition
for this system. Therefore the LDOS is modified for all wavelengths. In reality,
the LDOS will never be zero near an interface. Close to a real metal, the emitter
will start coupling to surface waves called surface plasmon polaritons, that will
increase the LDOS substantially [8].

1.2.2. The cavity
In a cavity confinement of light in three dimensions traps the light for a certain
time inside the volume of the cavity for light that is on resonance with the
resonance frequency of the cavity. For a perfect cavity, the light will be trapped
indefinitely. However, in reality light will always be able to leak out through for
instance mirrors that do not have 100 % reflectivity. The amount of confinement
in the cavity is gauged by the quality factor Q of the cavity which is proportional
to the confinement time of light inside the cavity. Q is defined as the ratio of
the energy contained in the cavity and the energy leaking out within one optical
cycle. A cavity has a certain frequency bandwidth ∆ω over which it can trap light
that is related to the Q factor of the cavity by Q = ω0

∆ω where ω0 is the resonance
frequency that is determined by the cavity size L as ω0 = 2πc

L . The LDOS near

13



Chapter 1 Introduction

Figure 1.2.: LDOS as a function of distance to perfect metal for an emitter in
n=1.5 with λ = 600 nm. The LDOS is normalised to the LDOS far
away from the interface. The transition dipole is oriented perpendic-
ular (black solid curve) or parallel (grey dash-dotted curve) to the
interface. The inset shows the dipoles and their mirror image.

the resonance frequency of the cavity can be strongly increased. This effect is
called the Purcell effect, named after Purcell who first realised the increased
transition probability at radio frequencies [11]. In nanophotonics the increased
mode density has been measured for InAs quantum dots inside tiny micropillar
cavities [12]. The complementary effect of inhibition for modes with a frequency
outside the cavity bandwidth has also been observed [13]. The LDOS of light on
resonance with the cavity can be increased strongly. However, the effectiveness
of a cavity is limited to narrow bandwidth and to a small volume. The LDOS at
a frequency detuned from the cavity will be lowered, but will not reach 0.

1.2.3. Photonic crystals

Photonic crystals are a specific type of composite materials that have a modulated
dielectric function with a periodicity of the order of the wavelength of light.
Because of this periodicity interference effects occur in the crystal, giving rise to
Bragg diffraction. Bragg diffraction is known from solid-state physics [14] and
occurs when the wavelength is of the order of the distance between the lattice
planes. The importance of these types of materials in the optical domain was first
realised by Bykov in 1972 [15] and was brought under strong worldwide attention
by the work of Yablonovitch [16] and John [17].

The Bragg condition is equal to:

mλ = 2d cos θ (1.4)
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Modifying the local density of states 1.2

where m is an integer which indicates the order of Bragg diffraction, λ is the
wavelength of light, d is the distance between the lattice planes and θ is the
angle of the propagating light wave with the normal to the surface. This is
schematically shown in fig. 1.3 a). When the path length difference between the
consecutive lattice planes is equal to a multiple of the wavelength, constructive
interference occurs, giving rise to a reflection peak. If the Bragg diffraction
is in the visible wavelength range this gives photonic crystals their opalescent
appearance known from for instance natural opal and butterfly wings.

The dispersion of light inside periodic structures can be understood by calcu-
lating the band structure. A part of a band structure is shown in fig. 1.3 b) for
propagation along the normal to the crystal planes. In a homogeneous medium
the dispersion relation between frequency and the wavevector is linear with a
slope equal to the speed of light divided by the refractive index c/n. For periodic
media, at k = π/d the Bragg condition is met. Here the band splits from the
central frequency ω = 2π

λ in two different branches separated by a stop gap. The
upper and lower frequency of the stop gap are a consequence of the standing
waves at the Bragg condition. The standing waves with the low frequency are
primarily located in the high index material, while the high frequency standing
wave is mostly in the low index material. Since the wavelength of the two waves
is identical but the refractive index differs, the standing waves have different fre-
quencies [18]. In a stop gap the resonance frequency is at the Bragg condition.
However, contrary to a cavity here the interference is destructive.

The width of the stop gap is determined by the photonic strength S = ∆ω
ω that

is a gauge for the interaction strength between light and the photonic crystal.
The photonic strength is defined as the polarisability per volume of a unit cell
of the crystal [19, 20]. The photonic strength depends upon a number of crystal
parameters, such as refractive index contrast and the geometry of the crystal.

Bragg diffraction from a single set of crystal planes is strongly angle depen-
dent. With increasing photonic interaction strength and increasing frequency,
light can diffract from more than one set of lattice planes simultaneously, caus-
ing band repulsion [21]. If the photonic strength is sufficiently large, the edges of
the stop gap hardly vary for different directions and polarisations, leading to an
omni-directional stop gap, or band gap. Inside this much sought after band gap
frequency range no modes are available due to complete destructive interference,
meaning that the density of states is zero and the vacuum fluctuations are sup-
pressed. This would completely inhibit the spontaneous emission of an emitter
located inside such a band gap. In this thesis we present the first ever systematic
study on spontaneous emission in a 3D photonic band gap.

Not any photonic crystal structure will have a band gap. Existence of a band
gap is predicted for particular symmetries: The simple cubic [22], the diamond
[23] and diamond-like [24] structures, the Yablonovite structure [25], the wood-
pile [26] and the close packed fcc and hcp structures [27]. Apart from the crystal
structure, the refractive index contrast needs to be sufficiently high for the ap-
pearance of a band gap in the band structure.

Well-known colloidal crystals are grown using self assembly of dielectric spheres
in an fcc structure and show clear stop gaps [19, 20, 28, 29]. Colloidal crystals are
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a) b)

Figure 1.3.: a) Schematic of Bragg diffraction. A set of lattice planes, indicated
with the dashed lines, causes constructive interference of the reflected
light when the optical path length difference is a multiple of the wave-
length. b) The dispersion relation along the normal to the lattice
planes in a). The grey bar indicates the stop gap.

most commonly fabricated from low refractive index materials like polystyrene.
These crystals do not have a band gap since their photonic strength is limited
because of the low refractive index contrast [30]. Pioneering time-resolved emis-
sion experiments were performed on colloidal crystals [31]. A modification of
the decay rate was found, but was probably caused by a change in the chemical
environment of the emitters [32]. Recently it was shown that the decay rate can
nevertheless be modified even in opal photonic crystals [33].

Inverse opals, consisting of fcc stacked air spheres with a backbone material of
high refractive index material [34] can have sufficient refractive index contrast to
show a band gap when the refractive index contrast is above 2.8 [27, 35]. Silicon
inverse opals have been fabricated and show high reflectivity [36, 37]. Inhibition
and enhancement of spontaneous emission has been shown for titania inverse
opals [38]. Even though the refractive index contrast is insufficient to achieve a
band gap, strong modification of the LDOS has been achieved in these structures
[39].

Structures have been fabricated in silicon with simple cubic crystal structure by
means of photo electrochemical etching that show high reflectivity [40, 41]. How-
ever it is hard to scale down these structures to telecom or visible wavelengths.
However, these structures may be applicable to modify the blackbody radiation
[42, 43] since it is possible to modify thermal radiation by nanostructures [44].

The Yablonivite structure was demonstrated in the microwave region, but is
extremely hard to make in the optical domain [45].

Woodpile structures are fabricated by stacking layers of dielectric rods. Reflec-
tion and transmission measurements performed on these woodpiles show strongly
photonic behavior [46–49]. However the sequential stacking process limits the
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When Fermi’s Golden Rule does not apply 1.3

crystal size to (at most) 8 or 9 layers since it introduces alignment errors. Emis-
sion from woodpile photonic crystals has been characterised by measuring time-
resolved emission from woodpiles fabricated of silicon [50]. A promising inhibition
of the decay rate was seen when comparing the rate of erbium atoms inside the
photonic crystal with the rate of erbium atoms implanted in silicon. However, no
systematical study was performed of the effect of the crystal lattice parameters
on the decay rate.

A very promising category of band gap photonic crystals is the inverse wood-
pile [26]. These structures promise a broad band gap with a relative width of 25
% [26, 51, 52] when fabricated of silicon. Some optical characterisation of these
structures have been performed by means of reflectivity measurements [53] that
show interesting results. No emission experiments have been performed as of yet.
Recently, our group has developed a new CMOS compatible method to fabricate
Si inverse woodpile crystals that show strong and broad reflecting peaks. In chap-
ter 5 of this thesis we will present the first experiments to control spontaneous
emission of quantum dots with these 3D inverse woodpile crystals.

1.3. When Fermi’s Golden Rule does not apply

To derive Fermi’s Golden Rule from first principles in quantum optics requires a
number of assumptions to be made. Most notably the Markovian approximation
is made that the atom-field system has no memory of previous time. There are
however situations in which this assumption is not valid. Three of these very
exciting physical situations will be briefly discussed in this section. Even though
experiments in these regimes are not discussed in this thesis, future work might
focus on this very intriguing breakdown of Fermi’s Golden Rule.

1.3.1. Strong coupling

Fermi’s Golden Rule applies to the interaction of one emitter with a continuous
number of field modes, the bath. When the emitter can only interact with one
field mode a very different outcome is found. This limit of interaction with only
one mode is called the strong coupling limit (compared to the weak coupling
limit for interaction with a continuous bath). The physics in such a strong
coupling situation can be described by the well known Jaynes-Cummings model
[2]. The quantum of energy will cycle back and forth between the excited state
of the emitter and the photon in the cavity reversibly, performing vacuum Rabi
oscillations at the Rabi frequency. In theory, this cycling of the quantum of
energy continues indefinitely. In experiment, it depends on the cavity quality
factor and mode volume whether the strong coupling regime is reached or the
weak coupling Purcell effect is observed. In nanophotonics experiments, strong
coupling has been achieved between nano cavities and quantum dots for photonic
crystal slab cavities [54], micropillar cavities [55] and microdisks [56].

17
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1.3.2. Fractional decay

In media with strong variations in the spectral and spatial distribution of the
LDOS, a deviation from the single exponential decay is also expected. In these
media the excited emitter coherently interacts with modes of low group velocity
in such a way that it never fully decays but rather remains in a superposition
of the excited state and the ground state, called fractional decay [57, 58]. This
behavior is expected on the band edge of a photonic band gap crystal and in the
frequency range near a Van Hove singularity. A Van Hove singularity is a cusp in
the density of states, caused by flat bands in the band structure of the photonic
crystal [59]. To the best of our knowledge fractional decay has not been observed
experimentally.

1.3.3. Fast modulation of LDOS in time

So far the discussed physics holds for static environments, where the local den-
sity of states does not change with time. However, when the LDOS is modulated
in time interesting new physics is expected. Fermi’s Golden Rule does not ap-
ply when changes in LDOS are of the order or shorter than the decay time of
the emitter. Our group has modified the LDOS in time, by optically switching
photonic structures with ultrafast picosecond light pulses [60, 61]. So far the
modified LDOS has been identified by measuring transient reflectivity of pho-
tonic structures. New experiments are pursued where the time-resolved emission
is measured of an emitter in a dynamically changing LDOS.

1.4. Disorder
Fabricated structures will always show some unavoidable disorder. This leads to
random scattering of light. In a bulk nanostructure a coherent light beam will
be randomised over a length scale called the mean free path l. If the sample
thickness is larger than the mean free path, multiple scattering of light occurs
[62]. The light will become diffuse due to the random walk that it follows through
the material. All white materials, from clouds and grains of salt to snow and beer
foam, owe their white color to multiple scattering of light. When the mean free
path is sufficiently short a phase transition from diffusion to localisation of light
is expected [62, 63] where light is trapped due to the interference.

In a perfect photonic crystal, the mean free path would be infinite. Disorder in
photonic crystals causes the light to be diffuse giving a finite mean free path. The
disorder in a photonic crystal is typically unintentional due to for instance the
fabrication process. Diffusion causes the interference effects in a photonic crystal
to be limited to a finite part of the crystal [64]. It is expected that when the
disorder is sufficiently large localisation of light will occur in a photonic crystal
with a photonic band gap [17].

Strong research effort is aimed at fabricating structures with intentional strong
disorder, in pursuit of localisation of light. One example of such structures are
the nanowire samples discussed in chapter 7. Although extremely interesting
localisation of light does not modify the local density of states. However, strong
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disorder causes the local density of states to fluctuate spatially [65–67]. This
spatial fluctuation has recently been observed [68].

1.5. Light sources
There are several physical emitters that can be used to mimic the behavior of
the two-level system discussed in paragraph 1.1 and that show strong sponta-
neous emission. If one studies the decay rate of the emitter a very important
property is the fluorescence quantum efficiency of the light source. In addition to
the radiative decay rate γrad real emitters always show a contribution from loss
processes, the non-radiative decay rate γnrad. This can be any process through
which the excitation energy is lost that does not involve emission of a photon.
The quantum efficiency of a light source is defined as:

QE =
γrad

γrad + γnrad
(1.5)

For use of emitters in applications like light emitting diodes (LEDs) it is im-
portant to have a high quantum efficiency, since with high quantum efficiency
more input energy is converted to light. Another important reason to use high
quantum efficiency sources is based on the measurement technique. In a time-
resolved experiment only the total decay rate γtot is measured, which is equal to
the sum of the radiative and non-radiative decay rates γtot = γrad + γnrad. Since
the LDOS only modifies the radiative decay rate, it is important for the emitter
to have a high quantum efficiency if the effect of LDOS is probed with time-
resolved emission. In this section two important types of emitters are discussed
that will be used in experiments presented in this thesis.

The first type of emitter is the organic fluorescent molecule or organic dye
[69]. These aromatic molecules fluoresce naturally, have typically a lifetime of
a few nanoseconds and have high quantum efficiency near 100 % [70]. A great
advantage of dye molecules is that they are all the same, contrary to metamate-
rials such as quantum dots. A disadvantage is that dye emitters blink and photo
bleach after emitting about 108 photons.

The second kind of emitter that is used in this thesis are colloidal quantum dots.
These are semiconductor nanocrystals with typically several nanometer diameter
[71, 72]. In fig. 1.4 a) a transmission electron micrograph of a CdSe quantum
dot is shown. The lattice fringes of the CdSe crystal are clearly visible. Colloidal
quantum dots are typically suspended in a solvent. In a semiconductor photons
can be absorbed when the energy is larger than the energy difference between
the conduction and the valence band. An electron is excited to the conduction
band, leaving a hole in the valence band. By the attractive Coulomb interaction,
the excited electron and the hole attract each other, forming a weakly bound
exciton [73, 74]. The average electron-hole distance is known as the exciton Bohr
radius [75]. When the nanocrystal size is comparable or smaller than the exciton
Bohr radius, the exciton is confined to the quantum dot. This causes the energy
between valence and conduction band to increase and the bands gradually split
into discrete levels as is schematically shown in fig. 1.4 b). This splitting results
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a) b)

Figure 1.4.: a) A transmission electron microscope image of a CdSe quantum dot
is shown. The scale bar is 2 nm. b) The band structure for bulk
semiconductor and quantum dots is shown schematically.

in a narrow, atom-like emission spectrum. However, the absorption remains
broadband, giving freedom to chose the excitation frequency. By changing the
size of the quantum dot and selecting an appropriate semiconductor the emission
energy can be tuned from the visible to the infrared. Quantum dots can have a
very high quantum efficiency. Up to 98 % has been measured for CdSe quantum
dots [76].

1.6. Outline of this thesis
In this thesis experiments are presented that show control of the spontaneous
emission of various emitters by placing the emitters in the presence of nanos-
tructures. By modifying the LDOS with these nanostructures the spontaneous
emission decay rate is controlled.

In chapter 2 the analytically well known modification of the local density of
states near a silver mirror is used to determine the quantum efficiency and size of
the transition dipole moment of commonly used CdSe quantum dots as a function
of emission energy. Here, knowledge of the LDOS is used as a tool to learn more
about the emission properties of CdSe quantum dots, a widely used emitter not
only in nanophotonics but also for biophotonic applications.

In chapter 3 the influence of the dipole orientation on ensemble measurements
are presented by the time-resolved emission of Rhodamine 6G laser dye near
a dielectric interface. Since the LDOS depends on the dipole orientation the
decay rate of the emitter depends on the angle of its dipole with respect to
the interface. Therefore, in ensemble measurements non-exponential decay is
expected. Indeed non-exponential decay is observed near an interface. When
the interface is removed the decay becomes exponential. For the first time the
exact shape of the non-exponential decay curve is calculated ab initio without
any adjustable parameter and shows very good agreement with the experiments.

In chapters 4 to 6 the control over spontaneous emission is demonstrated us-
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ing silicon photonic band gap crystals. In chapter 4 the experimental set-up,
the photonic crystals, the quantum dots and the experimental procedures are
discussed. In chapter 5 strong inhibition and enhancement of the decay rate
is presented for PbS quantum dots inside 3D silicon inverse woodpile crystals.
These crystals have a photonic band gap overlapping with the emission frequency
of the PbS quantum dots. Quantum dots emitting within the photonic band gap
show strong inhibition up to a factor of 11. In chapter 6 emission measurements
are presented of PbS quantum dots from 2D silicon photonic crystals with a cen-
tered rectangular structure. No modification of the decay rate is found but a
strong redirection of the emission is presented, showing intriguing peaks that are
linked to band edges in the band structure and may correspond to 2D Van Hove
singularities.

In chapter 7 CdSe quantum dots are placed in disordered arrays of gallium
phosphide nanowires that show strong multiple scattering of light. The decay rate
is modified by the presence of the nanowires. The change in the most frequent
decay rate is well understood by modeling the effect of a single nanowire on the
decay rate of the quantum dots. No effects of multiple scattering are seen in the
variation of the measured decay rates.

Chapter 8 concludes the thesis. A summary of the thesis is presented and an
outlook is given on future experiments and applications.
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Chapter 2

Optical properties of CdSe
quantum dots determined by
controlling the local density of
states

Control over spontaneous emission is important for many applications in nanopho-
tonics, such as efficient miniature lasers and LEDs [1, 2], efficient solar energy
collection [3], and even biophotonics [4]. Increasing attention has been given to
all solid state cavity quantum electrodynamics (QED) experiments [5–8]. For
spontaneous emission control the oscillator strength of a light source plays a cru-
cial role. The oscillator strength gauges the strength of the interaction of a light
source with the light field. The larger the oscillator strength is, the stronger is
the interaction between the source and the light field, and in cavity QED between
the source and the cavity field.

As light sources in nanophotonics, quantum dots are becoming increasingly
popular. Quantum dots are semiconductor nanocrystals with sizes smaller than
the exciton Bohr radius. Due to their small size, quantum dots have discrete
energy levels [9]. CdSe colloidal quantum dots in particular have generated enor-
mous interest in recent years because of the tunability of their emission energy
over the entire visible range with particle diameter [10]. Surprisingly no mea-
surements have been done of the emission oscillator strength of these quantum
dots, while this is highly important to interpret cavity QED experiments [11].
The oscillator strength has been investigated only qualitatively using absorption
measurements [12–14]. However, the accuracy of these measurements is limited
due to the strong blinking behavior of CdSe quantum dots, i.e., intermittency
in the emission of photons. Moreover, the oscillator strength determined from
absorption is not relevant to emission experiments since the quantum dots in the
off-state do absorb while they do not contribute to the emission.

In this chapter we present quantitative measurements of the oscillator strength
and quantum efficiency of colloidal CdSe quantum dots as a function of emission
energy and thus dot diameter since the emission energy and diameter are uniquely
related [10]. The oscillator strength of an emitter can be determined by placing
it close to an interface. The emission rate is then also affected by emission which
is reflected at the interface. This interference leads to a controlled modification
of the local density of states (LDOS) allowing us to separate radiative and nonra-
diative decay rate components. This technique has been pioneered by Drexhage
for dye molecules [15] and used to determine quantum efficiency of Si nanocrys-
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tals [16], erbium ions [17], epitaxially grown InAs quantum dots [18] and colloidal
CdSe quantum dots [19, 20]. Recently it has been found that the emission oscil-
lator strength can also be determined with this technique [18]. Here, we place
CdSe quantum dots on different distances near a silver interface to quantitatively
determine the oscillator strength as a function of emission energy.

2.1. Experimental Methods

2.1.1. Sample fabrication

The planar samples with controllable LDOS consist of a glass substrate of 24
by 24 mm on which a stack of 4 different layers is made, as shown in fig. 2.1.
1) The first layer is an optically thick 500 nm layer of silver that is deposited
with vapor deposition. 2) Next a layer of SiO2 is evaporated onto the silver.
The SiO2 layer has a refractive index of 1.55 ± 0.01 at a wavelength of 600
nm as determined by ellipsometry. The thickness of the SiO2 layer is varied to
control the distance z that the quantum dots have to the silver interface. 3) On
top of the SiO2 layer, a very thin layer of polymethyl methacrylate (PMMA) is
spincoated that contains the CdSe quantum dots. This layer is ∆z = 14± 5 nm
thick, determined by profilometry. PMMA has a refractive index of 1.49± 0.01.
4) On top of the PMMA layer a thick ∼ 1µm layer of polyvinyl alcohol (PVA)
is spincoated to avoid reflections from a PMMA/air interface. The PVA is 9.4
% by weight dissolved in a mixture of water and ethanol. Since the PMMA
and quantum dots do not dissolve in water and ethanol, the PMMA layer stays
intact. PVA has a refractive index of 1.50±0.01. All parameters are summarized
in Table 2.1.

Table 2.1.: Layer properties

Layer Thickness (nm) Refractive index Fabrication method

1) Silver 500 0.27 + 4.18i vapor deposition
2) SiO2 variable z 1.55 vapor deposition

3) PMMA + QDs 14 ± 5 1.49 spincoating
4) PVA ∼ 1000 1.50 spincoating

2.1.2. Quantum dots

CdSe quantum dots with a ZnS shell are purchased from Evident Technology
(Fort Orange, emitting around 600 nm). We have performed transmission elec-
tron microscopy experiments to verify the quantum dot diameter. Fig. 2.2 a
shows a TEM micrograph of a typical dot that has a diameter of 3.9 nm. From
measurements on 98 quantum dots, we have determined the histogram of diam-
eter distributions, see fig. 2.2 b. The quantum dots have an average diameter
of D = 4.1 nm with a standard deviation of 0.5 nm. Hence, our quantum dots
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Figure 2.1.: Schematic cross-section of the sample used in the measurements. The
different layers of the sample are shown together with corresponding
thickness and fabrication technique.

are smaller than the exciton Bohr radius and therefore the strong confinement
regime for excitons applies to our dots.

The suspension that is spincoated consists of toluene with 0.5 % by weight
495,000 molecular weight PMMA and a quantum dot concentration of 1.21 10−6

mol/liter. The quantum dots have an estimated density of 1 per 450 nm2. The
quantum dots are thus sufficiently dilute in the PMMA layer to exclude energy
transfer and reabsorption processes between quantum dots. This was verified
by measuring that the decay rate was not influenced by laser power or changes
in concentration around the used concentration. The sample is contained in a
nitrogen purged chamber during measurements to prevent photo oxidation of the
quantum dots.

2.1.3. Optical detection

The optical set-up used in the experiments is schematically shown in fig. 2.3.
Light from a pulsed frequency doubled Nd3+:YAG laser (Time Bandwidth Cougar)
with an emission wavelength of 532 nm, repetition rate of 8.2 MHz and pulse
widths of 11 ps is used. This light is guided into an optical fiber and focused
onto the sample by a lens with a focal length of 250 mm, leading to a focus with
a diameter of approximately 50 µm on the sample.

The light emitted by the quantum dots is collected by a lens, collimated and
focused onto the slit of a prism monochromator (Carl Leiss). The slit width is
set to 400 µm giving a spectral resolution ∆λ = 6 nm, which is narrow compared
to the bandwidth of the LDOS changes. A Hamamatsu multichannel plate pho-
tomultiplier tube is used as a photon counter. With this setup it is possible to
measure spectra by scanning the monochromator and to measure decay curves
of emitters at particular emission frequencies by time correlated single photon
counting [21]. This technique measures the time between the arrival of an emit-
ted photon (start) and the laser pulse (stop) with ps resolution. By repeating
such a measurement a histogram of the arrival times is made from which a decay
rate can be determined. The time resolution of the set-up is 125 ps, given by
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(a) (b)

Figure 2.2.: a) Transmission electron micrograph of a CdSe quantum dot with a
diameter D = 3.9 nm. The fringes from the lattice planes are clearly
seen. The scale bar is 2 nm. b) The distribution in diameter found by
analyzing TEM images of 98 quantum dots. The average diameter
is 4.1 nm with a standard deviation of 0.5 nm.

Figure 2.3.: A schematic picture of the experimental setup. Light from the laser
excites the quantum dots in a layered sample inside a nitrogen purged
chamber. The emitted light is collimated by a lens L1 with f=12 cm,
focused by lens L2 with f=10 cm on the entrance slit of a monochro-
mator and detected by the photomultiplier tube. A filter f1 is added
to block any scattered laser light.
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the full width half maximum of the total instrument response function that is
shown in fig. 2.5. The instrument response function is much shorter than the
decay curve of CdSe quantum dots, with a typical decay time of 16 ns in toluene.
Therefore, deconvolution of the response function is not necessary to analyze the
data.

2.1.4. Data interpretation
The quantum dots in the polymer layer show a nonexponential decay, probably
caused by microscopic heterogeneity of the polymer [22]. Nonexponential behav-
ior has previously been found for CdSe quantum dots in PMMA by Fisher et al.
[23] even for single quantum dots. To model the decay curve the data are fitted
with a distribution of decay rates as explained in ref. [24]. A function of the
following form is used to model the decay curve:

f(t) =

∫ ∞
0

σ(γtot) exp(−γtott)dγtot (2.1)

where the normalized distribution in decay rates is chosen to be lognormal

σ(γ) = A exp
[
−
( ln(γ)− ln(γmf )

w

)2]
(2.2)

The normalization factor A equals A = [γmfw
√
π exp(w2/4)]−1. The two

relevant adjustable parameters that can be extracted from the model are the
most frequent decay rate γmf which is the peak of the lognormal distribution
and ∆γ = 2γmf sinh(w) which is the 1

e width of the lognormal distribution.
Decay rates presented in this paper are an average of decay rates found for

at least three measurements performed on different locations on a sample with
a particular SiO2 layer thickness. The error in the decay rate is conservatively
estimated to be ± 3 % which is the maximum difference found between measure-
ments on the same sample.

2.2. Results

2.2.1. Experimental results
In fig. 2.4 the emission spectrum of CdSe quantum dots is shown for the quantum
dots in toluene, in a planar sample without silver, and in a planar sample with a
silver mirror. The peak energies of all three spectra are identical within experi-
mental error. The width of the spectrum is caused by inhomogeneous broadening
due to size polydispersity of quantum dots in the ensemble. The homogeneous
spectral width of the individual quantum dots is much narrower [25]. By select-
ing a narrow emission energy window quantum dots of a particular diameter are
selected. Within experimental error there is no difference between the width of
the emission spectra in the different environments, indicating that there is no
spectral broadening due to the polymer environment.

In fig. 2.5 decay curves are shown at the emission peak at 2.08 eV for an
ensemble of quantum dots in toluene suspension and in a planar layer without
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Figure 2.4.: Emission spectra of CdSe quantum dots in toluene suspension, in a
planar sample without silver, and in a planar sample with a silver
mirror. The spectra are offset for clarity by 200 and 400 counts/s
respectively. The spectrum in PMMA near the mirror and in toluene
are scaled to the spectrum in PMMA on glass by a factor of 0.75.

mirror. The quantum dots in toluene show a single exponential decay as expected,
giving a decay rate γ = 0.061 ns−1 ± 0.002. Fitting the data with a single
exponential gives a value of 1.94 for the goodness of fit χ2

red indicative of a
reasonable fit [26].

The lognormal distribution of decay rates can be fitted to the decay curve of
quantum dots inside PMMA and appears to be a good fit with χ2

red = 1.49.
For the quantum dots inside the PMMA layer γmf = 0.084 ns−1 ± 0.002. The
decay of spontaneous emission from quantum dots in toluene suspension can also
be fitted with a lognormal distribution of decay rates, giving χ2

red = 1.71. The
distribution of decay rates in toluene is characterised by γmf = 0.063 ns−1±0.002
close to the value for the decay rate γ = 0.061 ns−1 ± 0.002 found from a single
exponential decay. In fig. 2.6 the lognormal distributions of decay rates are shown
for the decay curve of quantum dots in toluene and in the polymer layer. The
distribution of decay rates for quantum dots in polymer is much broader than
the distribution found for quantum dots in toluene. When a curve is modeled
with a single exponential decay the decay rate distribution reduces to a delta
function. The decay rate at the peak of the distribution, the most frequent decay
rate, characterizes the decay in the measurement best as supported by the fact
that the single exponential rate γ and γmf for decay in toluene are equal within
experimental error. Therefore, the most frequent decay rate will be used in our
further analysis.

Measurements of decay rates for two planar samples with different SiO2 layer
thicknesses (z = 73 nm and z = 166 nm respectively for sample 1 and 2) are
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Figure 2.5.: Decay curves of quantum dots at the emission peak at 2.08 eV in
PMMA on glass with a top layer of PVA (grey circles) and these
quantum dots in toluene suspension (black triangles). The instru-
ment response function (IRF) is indicated by the black line. The
peaks in the IRF near 12 and 36 ns are related to the pulse picker of
the laser. The decay curves are fitted with a lognormal distribution
of decay rates. Residuals are shown in the bottom panel.

Figure 2.6.: Lognormal distribution of decay rates of quantum dots in a PMMA
layer on glass with a PVA cover layer and for quantum dots in toluene
resulting from fits in fig. 2.5. The black vertical line shows the delta
function distribution for single exponential fit.
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Figure 2.7.: Decay curves for quantum dots samples with different SiO2 layer
thicknesses, z = 73 nm and z = 166 nm respectively for sample 1
and 2, measured at an emission energy of 2.08 eV. The decay curves
are fitted with a lognormal distribution of decay rates. Residuals are
shown in the bottom panel.

shown in fig. 2.7 for quantum dots that emit at the peak emission energy of
2.08 eV. Nonexponential and significantly different decay curves are found for
quantum dots that have different distances to the silver interface. The quantum
dots in sample 1 clearly decay faster than those in sample 2. The experimental
curves are fitted with a lognormal distribution of decay rates. The residuals
shown in the bottom panel are randomly distributed around a mean value of
zero, signalling a good fit. Indeed the χ2

red is 0.72 and 1.44 for sample 1 and 2
respectively, close to the ideal value of 1, confirming that the decay curves are
well modeled by a lognormal distribution of decay rates.

2.2.2. Model of decay rates

Results for the most frequent decay rate for different distances to the interface are
presented in fig. 2.8 for two different emission energies. The most frequent decay
rate decreases with increasing distance to the silver mirror. The measured decay
rate γtot is a sum of radiative γrad and nonradiative γnrad decay rate, γtot =
γrad + γnrad. From Fermi’s golden rule the radiative decay rate is proportional
to the projected LDOS ρ(ω, z). Therefore, the total decay rate can be expressed
as

γtot(ω, z) = γnrad(ω) + γhomrad (ω)
ρ(ω, z)

ρhom(ω)
(2.3)
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Here, ρhom(ω) is the LDOS in a homogeneous medium. The LDOS near an
interface has been calculated using a theory developed by Chance, Prock and
Silbey [27]. As a model an interface between two semi infinite media has been
used, with n1 = 0.27 + 4.18i (Ag layer) [28] and n2 = 1.52 (SiO2, PMMA and
PVA). The LDOS is calculated for transition dipoles oriented parallel or perpen-
dicular to the interface, since our measurements are performed on an ensemble
of quantum dots that are randomly oriented with respect to the interface. This
situation differs from self-assembled dots that are strongly oriented [18]. A decay
measurement f(t) for an ensemble of emitters can be described by the following
expression [29, 30]:

f(t) =
I0
2π

∫ 2π

0

dφ

∫ π/2

0

dθA(θ, φ) γ(θ, φ) e−γ(θ,φ)t sin θ (2.4)

The term A(θ, φ) accounts for angle dependence of absorption, emission and
detection. CdSe quantum dots do not have angle dependent absorption [31].
Moreover, CdSe quantum dots are known to have a 2D transition dipole de-
scribed by a ”dark axis” along the c-axis of the nanocrystal and a ”bright plane”
perpendicular to this axis in which the transition dipole can be oriented [31, 32].
Since the quantum dots have a 2D dipole, the emission is less directional than if
it were a 1D dipole. Because the angle dependence of the emission and detection
plays a small role, the factor A(θ, φ) can be safely taken to be independent of
θ and φ. Near an interface, the decay rate γ is no longer dependent on φ and

is given by γ(θ) = γ‖ cos(θ)2 +
(γ‖+γ⊥)

2 sin(θ)2 where θ is the angle between the
dark axis of the quantum dot and the normal to the interface as defined in fig.
2.9. Therefore, carrying out the integral over φ results in

f(t) = I0

∫ π/2

0

(
γ‖ cos2 θ +

(γ‖ + γ⊥)

2
sin2 θ

)
e−(γ‖ cos2 θ+

(γ‖+γ⊥)

2 sin2 θ) t sin θ dθ

(2.5)
If γ‖ = γ⊥ the decay curve shows a single exponential decay. When γ‖ and γ⊥

have different values a multi-exponential decay is found. In our experiment, γ‖
and γ⊥ only differ by about at most 10 %. If f(t) is calculated for an intensity
range of 3 decades relevant to our experiment, a single exponential decay is
found to a very high precision with a decay rate given by γtot = 1

3γ⊥+ 2
3γ‖. This

isotropic decay rate is also used for experiments with atoms near an interface,
where the atom have a rotating transition dipole moment [33].

2.2.3. Discussion

The lines in fig. 2.8 show the calculated isotropic decay rate versus distance to
the interface. The calculations are in very good agreement with the data.

By calculating the LDOS for each distance, the distance axis in fig. 2.8 can be
converted to an LDOS axis. In fig. 2.10 the results are shown for two different
emission frequencies together with a linear fit. Very good agreement between
experiments and theory is observed as expected from Fermi’s golden rule. For an
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Figure 2.8.: Most frequent decay rate γmf versus distance to the interface for an
emission energy of 2.08 eV (grey circles) and 2.00 eV (black trian-
gles). The lines show calculations of the decay rate using the model
developed by Chance, Prock and Silbey [27].

Figure 2.9.: The angle θ is the angle between the dark axis of the CdSe quantum
dot and the normal to the interface
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emission energy of 2.08 eV γnrad = 0.017± 0.006 ns−1 and γhomrad = 0.065± 0.005
ns−1 giving a quantum efficiency of 80 ± 5 %.

In fig. 2.11 a) the homogeneous radiative decay rate γhomrad is shown as a function
of the emission energy. The homogeneous radiative decay rate is observed to first
increase and then decrease with emission frequency. The radiative decay rate
found by Brokmann et al. [19] corresponds very well to our data. It should be
noted that we derive the homogeneous radiative decay from the most frequent
decay rate of the distribution. Since our data agree very well with the decay rate
found using a single exponential model and a much shorter integration time [19],
this corroborates our choice for the most frequent decay rate as the parameter
that describes the decay curves best. Our results also validate the choice for the
isotropic decay rate model assumed by Brokmann et al.

Previously Van Driel et al. reported that the total decay rate (which is the sum
of radiative and nonradiative decay rate) of CdSe colloidal quantum dots increase
with emission energy [34] in agreement with our measurements. A theory was
developed for the radiative decay rate as a function of frequency. For an ideal
two level exciton, the radiative decay rate should be proportional to frequency. If
a multilevel model of the exciton is considered this increase will be supra-linear.
In reference [34] the model for the excitonic multilevel emitter shows agreement
with the total decay rate data for CdSe quantum dots and excellent agreement
for CdTe dots. The assumption was also made that the total decay rate is equal
to the radiative decay rate. However, this is not valid, as can be seen in fig.
2.11 a). Results for the multilevel exciton model for radiative decay rate are
plotted in fig. 2.11 a). The model does not match the data, indicating that
the multilevel exciton model is not a correct description for CdSe quantum dots.
The results of a tight binding calculation [35] has values 75 % lower than in the
experiment, which thus also do not describe CdSe quantum dots. Califano et al.
[36] calculated the room temperature radiative decay rate via a pseudopotential
calculation. A good agreement between this calculation and our data is seen,
both qualitatively and quantitatively.

The quantum efficiency for different emission energies is shown in fig. 2.11 b).
The quantum efficiency is found to be between 66 % and 89 % depending on
emission energy. These values are significantly higher then the value stated by
the supplier Evident, 30-50 %. This latter value was determined by comparing
the emission intensity to an emitter with known quantum efficiency [26]. This
method leads to an underestimation of the quantum efficiency because it depends
on absorption of light: CdSe quantum dots show strong blinking behavior [23]
and quantum dots that are in the off-state do absorb light, but do not emit.
These quantum dots are probed with an absorption measurement, while there is
no contribution to the emission. This causes an underestimation of the quantum
efficiency in absorption measurements.

On the right axis in fig. 2.11 b) the nonradiative decay rate is plotted. The
nonradiative decay rate increases with emission energy or equivalently decreases
with quantum dot size. This is probably due to the fact that for smaller quantum
dots the surface is relatively more important: Since the surface is a source of
nonradiative decay, this decay rate is increased for smaller quantum dots. An
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Figure 2.10.: The decay rate versus the normalised isotropic LDOS for two dif-
ferent emission energies. Data are fitted with a linear function as
expected from Fermi’s golden rule.

increased nonradiative decay rate for smaller quantum dots agrees with previous
results for CdSe quantum dots [37] as well as for epitaxially grown InAs quantum
dots [18]. The nonradiative decay rate found by Brokmann et al. [19] for a
different batch of quantum dots is lower than our results. The difference could
very well be caused by a difference in the ZnS capping layer since this drastically
changes the nonradiative decay.

The emission oscillator strength fosc of the transition can be calculated from
the homogeneous radiative decay rate via [39]

fosc(ω) =
6meε0πc

3

q2nω2
γhomrad (ω) (2.6)

where me is the electron mass, ε0 is the vacuum permittivity, c is the speed
of light, q is the electron charge and n is the refractive index of the surround-
ing material. For an emission energy of 2.08 eV fosc = 0.69 ± 0.04. This is, to
our knowledge, the first experimental determination of the oscillator strength of
colloidal quantum dots that is determined by measuring the photoluminescent
emission from quantum dots. Previous qualitative experiments to determine the
relation between oscillator strength and size of quantum dots used the absorp-
tion spectrum of the quantum dots [12–14]. The absorption oscillator strength
is not necessarily equal to the emission oscillator strength since our measure-
ment is only sensitive to quantum dots that emit light and are in the on-state,
while absorption measurements probe all quantum dots of the strongly blinking
ensemble, including dots that are in the off-state.

In fig. 2.11 c) the experimentally found oscillator strength is shown for different
emission energies. The oscillator strength is only weakly dependent on energy: at
first showing a slight increase which is followed by a slight decrease with increasing
emission energy. Indeed for quantum dots in the strong confinement regime the
oscillator strength is expected to be only weakly dependent on emission energy
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Figure 2.11.: a) Radiative decay rate (filled circles), determined from the linear
fit in fig. 2.10 shown versus emission energies. One data point by
Brokmann et al. [19] is plotted with the open circle. A model for a
multilevel exciton from [34] is shown with a solid line. The dashed
line is a tight binding calculation of radiative decay rate [35]. The
crosses connected with the dotted line are the results from pseu-
dopotential calculations [36]. b) Quantum efficiency (circles) and
nonradiative decay rate (filled triangles) versus emission energies.
The open triangle is the result for nonradiative decay from Ref.
[19]. c) Oscillator strength for different emission energies (circles)
together with a model describing a strongly confined quantum dot
(equation 2.7, dashed line), and results from tight binding calcula-
tions (triangles) [38].
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since in this regime, the wavefunctions of electron and hole overlap completely
independent of quantum dot size [9, 40]. To verify whether this overlap between
electron and hole is indeed unity, the wavefunctions for electron and hole were
calculated using a finite-element method for a simple effective-mass quantum dot
model. The overlap was calculated for a spherical CdSe quantum dot core with
a 2 nm ZnS shell. As expected, the overlap deviated from unity by only 10−4 for
core radii ranging from 2 to 4 nanometer.

In the strong confinement limit the oscillator strength is given by [40]

fosc =
3

4

a∗3B
R3

ωbulk
ωdot

fbulk

4
3πR

3

1
2

√
3

2 a
2c

=
4√
3
π
a∗3B
a2c

ωbulk
ωdot

fbulk (2.7)

where fosc is the oscillator strength of the quantum dot, fbulk is the oscillator
strength in bulk per chemical CdSe unit, a∗B is the exciton Bohr radius, R is
the radius of the quantum dot, ωbulk is the bulk emission frequency, ωdot is the
emission frequency of the quantum dot and a and c are the hexagonal lattice
constants of CdSe (wurtzite structure). For a∗B = 5.4 nm, a = 0.4302 nm, c =
0.7014 nm, fbulk = 5 10−4 per chemical CdSe unit [13] and ωbulk = 2.79 1015 rad/s
the expected curve is shown in fig. 2.11 c). The calculated values are surprisingly
a factor of 5 larger than the experimentally found values. The oscillator strength
has also been calculated by Ramaniah and Nair [38] by a tight binding approach
and was found to be 4.9 for spherical CdSe quantum dots with a radius of 2.07
nm. Interestingly, if the oscillator strength is calculated from the radiative decay
rate found by the tight binding approach [35] from fig. 2.11 a) oscillator strengths
a factor of four lower than our experimental values are found, opposite to Ref.
[38]. The cause of the differences between strong confinement (eq. 2.7), tight
binding calculations and our data is not known. However, qualitatively in all
cases a weak dependence on emission energy is found that slightly decreases for
higher emission energy, in agreement with our results.

Results from absorption measurements [12, 13] also find that the oscillator
strength is independent of radius. Leatherdale et al. [14] find a different behavior,
seeing a linear relation between oscillator strength per volume and radius instead
of a cubic dependence.

Remarkably, for such a widely studied quantum dot as CdSe, theoretical un-
derstanding of the emission behavior is limited. Only the pseudopotential cal-
culations show quantitative agreement with our experiments while tight binding
results show either under- or overestimation. Therefore, a fundamental study is
warranted to interpret the large variations among the theoretical predictions.

2.2.4. Relative width of the distribution

In this chapter results are presented of the effect of modified LDOS on the most
frequent decay rate. This most frequent decay rate is found by fitting a log-
normal distribution of decay rates to the experimental decay curves. The other
independent fitting parameter in this fit is the relative width of the lognormal
distribution. In this section results for the relative width are presented.
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Figure 2.12.: Relative width of the lognormal distribution versus LDOS for emis-
sion energies of 2.08 and 2.00 eV. The lines are linear fits of the
data.

Figure 2.13.: Measurements of relative width for a homogeneous system
(LDOS=1) plotted versus the extracted quantum efficiency (see fig.
2.11 b) together with a linear fit.

In fig. 2.12 the relative width, defined as ∆γ
γmf

, is plotted versus normalised

local density of states for emission energies of 2.08 and 2.00 eV. For increasing
LDOS the relative width decreases linearly. Increasing the LDOS effectively
increases the quantum efficiency because the radiative decay rate is increased
while the nonradiative decay rate is constant. For increasing quantum efficiency
the distribution in decay rates gets narrower, giving a strong indication that the
width of the distribution is determined by the nonradiative decay rate, which
confirms the proposition by Fisher et al. [23].

In fig. 2.13 the relative width measured in the homogeneous environment with
LDOS = 1 is plotted versus the extracted quantum efficiency for each emission
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energy. The same trend is found: For increasing quantum efficiency the relative
width of the distribution decreases linearly. When the quantum efficiency is 100
%, the decay rate is purely radiative. If the width in the distribution of decay
rates is only caused by the nonradiative rate, the width should be zero at 100 %
efficiency. This is not the case, indicating that there is a distribution in radiative
decay rate as well. Vallée et al. [22] have also found distributions of decay rates
for single dye in polymer and attribute this to local density variations in the
surrounding polymer matrix causing a distribution in radiative decay rate. In
conclusion, our data shows that there is both a distribution in nonradiative and
radiative decay rate that cause the distribution in total decay rate.

2.3. Conclusions
In conclusion, we have separately determined the radiative and nonradiative de-
cay of CdSe quantum dots by modifying the LDOS in a controlled way and
measuring the total decay rate. This allows us to quantitatively determine the
oscillator strength and quantum efficiency versus emission frequency. The non-
radiative decay rate increases with emission energy corresponding to a decrease
in quantum efficiency. The radiative decay rate first increases and then decreases
with energy. This leads to the conclusion that the increase in total decay rate
with energy measured previously is due to an increasing nonradiative component.
The emission oscillator strength as a function of emission energy is determined
with unprecedented accuracy since for the first time this quantity is determined
directly from emission experiments. The oscillator strength is weakly size depen-
dent, which is expected in the strong confinement regime. The oscillator strength
is found to be on the order of 0.7. Previous calculations of the radiative decay
rate by pseudopotential method agree well with our results, whereas the results
from tight binding differ considerably. The limited oscillator strength makes the
CdSe colloidal quantum dots less suited for cavity QED experiments. On the
other hand, the quantitative determination of the oscillator strength paves the
way for an ab initio understanding of spontaneous emission control [7].
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U. Banin, Cavity qed with semiconductor nanocrystals, Nano Lett. 6, 557
(2006).

[12] O. Schmelz, A. Mews, T. Basche, A. Herrmann, and K. Müllen, Supramolec-
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[29] N. Danz, J. Heber, A. Bräuer, and R. Kowarschik, Fluorescence lifetimes of
molecular dye ensembles near interfaces, Phys. Rev. A 66, 063809 (2002).

[30] A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, Spon-
taneous emission rates of dipoles in photonic crystal membranes, J. Opt.
Soc. Am. B. 23, 1196 (2006).

[31] S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, Three-dimensional
orientation measurements of symmetric single chromophores using polariza-
tion microscopy, 399, 126 (1999).

[32] A. L. Efros, Luminescence polarization of cdse microcrystals, Phys. Rev. B.
46, 7448 (1992).

44



References Chapter 2

[33] W. L. Barnes, Topical review: Fluorescence near interfaces: the role of pho-
tonic mode density, J. Mod. Opt. 45, 661 (1998).

[34] A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Van-
maekelbergh, Frequency-dependent spontaneous emission rate from cdse and
cdte nanocrystals: Influence of dark states, Phys. Rev. Lett. 95, 236804
(2005).

[35] A. F. van Driel, Light sources in semiconductor photonic materials, Ph.D.
thesis, University of Utrecht, 2006.

[36] M. Califano, A. Franceschetti, and A. Zunger, Lifetime and polarization of
the radiative decay of excitons, biexcitons, and trions in cdse nanocrystal
quantum dots, Phys. Rev. B. 75, 115401 (2007).

[37] X. Fan, M. C. Lonergan, Y. Zhang, and H. Wang, Enhanced spontaneous
emission from semiconductor nanocrustals embedded in whispering gallery
optical microcavities, Phys. Rev. B. 64, 115310 (2001).

[38] L. M. Ramaniah and S. V. Nair, Optical absorption in semiconductor quan-
tum dots: A tight-binding approach, Phys. Rev. B. 47, 7132 (1993).

[39] A. E. Siegman, Lasers (University Science Books, 1986).
[40] Y. Kayanuma, Quantum-size effects of interacting electrons and holes in

semiconductor microcrystals with spherical shape, Phys. Rev. B. 38, 9797
(1988).

45





Chapter 3

Non exponential decay of
ensembles of emitters near an
interface

From Fermi’s golden rule it is known that the radiative decay rate is proportional
to the local density of states (LDOS), see e.g. [1]. This LDOS is a function of
position r, frequency ω and dipole orientation ed. The effect of position (see e.g.
chapter 2 and references therein) and frequency (chapter 5 and references) has
often been studied. The experimental study on the effect of dipole orientation
on the emission properties has only received attention recently, especially with
the possibility of detecting light from a single emitter. A recent theoretical study
has emphasised that the orientational dependence is fully characterised by the
(extreme) rates along three perpendicular main axes, namely the minimum and
the maximum rates and an intermediate rate [2].

Previously, ensembles of emitters were studied, starting with the pioneering
experiments by Drexhage of emitters near an interface, reviewed in [3]. In the first
experiments the decay was modeled with a single exponential with the isotropic
decay rate, the decay rate averaged over all directions [4, 5]. However, if the
emitter has a fixed transition dipole moment it is only sensitive to the LDOS
projected on that particular orientation. In experiments on single emitters in
an inhomogeneous environment a single exponential decay is found with a decay
rate that depends on the dipole orientation [6, 7]. If one studies an ensemble of
fixed emitters in a inhomogeneous environment, every different orientation of the
transition dipole moment has a different decay rate leading to a multi-exponential
decay curve [8, 9]. The degree of non-exponentiality depends on the difference
between the extreme decay rates for different orientations of the transition dipole
moment. While non-exponential decay is usually avoided in experiments, it has
recently been realised that a careful analysis of such behavior yields new insight
in the variation of the decay rates of the ensemble of emitters [10–12]. Even
a relatively simple geometry close to an interface can have almost a factor of
3 difference between the extreme decay rates for differently oriented dipoles.
However, up to now only single exponential decay curves were measured from
ensembles near such interfaces [8, 13–15], due to limitations in the experimental
set-up or sample preparation. Thus, the extreme rates of the ensemble remain
obscured.

In this chapter, we present measurements of emission of ensembles of emitters
near an interface, where a factor of 2.6 difference in LDOS for different dipole
orientations is present. The non-exponential decay is clearly observed. The decay
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curve agrees very well with the theoretically calculated decay curve. By using
a Monte Carlo approach, it is shown that the distribution of the decay rates is
purely caused by the dipole orientation, allowing an ab initio determination of
the distribution of decay rates.

3.1. Experimental Methods

3.1.1. Sample fabrication

The samples consist of a glass substrate of 24 by 24 mm on which a layer of
polyvinyl alcohol (PVA) with Rhodamine 6G (R6G) laser dye is spincoated. This
layer is 21 nm thick as measured with profilometry with a 5 nm accuracy. On
top of the PVA layer a 600 nm layer of polystyrene (PS) is added for a reference
measurement to obtain a system with homogeneous decay rate without nearby
interfaces.

The local density of states (LDOS) near an interface can be calculated by a
method developed by Chance, Prock and Silbey [4] for a dipole oriented parallel or
perpendicular to the interface. The theoretical curve for LDOS near an interface
can be seen in fig. 3.1. The LDOS is normalised to vacuum. Rhodamine 6G has
almost 100 % quantum efficiency [16], meaning that the measured total decay
rate is almost equal to the radiative decay rate, so that the measured decay rate is
proportional to the LDOS shown in figure 3.1. The grey bar in fig. 3.1 indicates
the sample thickness used in our experiments. For a dipole moment oriented
parallel to the interface the LDOS is 1.46, for a dipole oriented perpendicularly
it is 0.56, giving a factor of 2.6 difference in LDOS between the extremes for
differently oriented dipoles. The thickness of the layer causes a variation in LDOS
for equally oriented dipoles but this spread is much smaller than the difference
between the LDOS for different dipole orientations. For parallel dipoles the
variation due to the layer thickness is ± 3 %, for the perpendicular dipoles this
is ± 23 %.

3.1.2. Optical detection

The optical set-up used in the experiments is schematically shown in figure 3.2.
Light from a diode laser (Picoquant) with an emission wavelength of 447 nm,
repetition rate of 20 MHz and pulse widths of 78 ps is used to excite the dye.
This light is guided into an optical fiber and focused onto the sample by an
objective with NA = 0.05, leading to a focus with a diameter of approximately
10 µm on the sample.

The light emitted by the R6G dye is collected by a lens, collimated and focused
onto the slit of a prism monochromator (Carl Leiss). The slit width is set to 1000
µm giving a spectral resolution ∆λ = 6 nm. All decay measurements presented
here are measured at a free space wavelength λ = 563 nm. A Hamamatsu pho-
tomultiplier tube is used as a photon counter. With this setup it is possible to
measure spectra by scanning the monochromator and to measure decay curves
of emitters at particular emission frequencies by time correlated single photon
counting. This technique measures the time between the arrival of an emitted
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Figure 3.1.: Calculation of local density of states near an n=1 (air) to n=1.52
(polymer) interface for parallel and perpendicularly oriented dipoles
(grey dash-dotted and black solid line respectively). The LDOS is
normalised to the LDOS in vacuum.

Figure 3.2.: A schematic picture of the experimental setup. Light from the laser
excites the Rhodamine 6G in the sample. The emitted light is col-
limated by a lens l1 with f=12 cm, focused by lens l2 with f=10
cm on the entrance slit of a monochromator and detected by the
photomultiplier tube. A filter f1 serves to block scattered laser light.
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photon (start) and the laser pulse (stop) with ps resolution [17, 18]. By repeating
this measurement a histogram of the arrival times is made from which a decay
rate can be determined. The time resolution of the set-up is 125 ps, given by the
full width half maximum of the total instrument response function (IRF).

3.2. Calculating the distribution of decay rates of
ensembles

The fluorescence decay curve of an ensemble of emitters near an interface can be
calculated analytically. In a decay measurement the decay of the excited state
level is measured by observing the number of emitted photons as a function of
time. A decay measurement f(t) for an ensemble of emitters with 100 % quantum
efficiency can be described by the following expression [8, 9]:

f(t) =
I0
2π

∫ 2π

0

dφ

∫ π/2

0

dθA(θ, φ) γ(θ, φ) e−γ(θ,φ)t sin θ (3.1)

The term A(θ, φ) accounts for angle dependence of absorption, emission and
detection where θ and φ is the angle with respect to the interface and the az-
imuthal angle respectively. This experimental term is neglected for now. In sec-
tion 3.3 experimental evidence is presented that validates our choice to neglect
this prefactor.

In general, the decay rate of a dipole with a random orientation in the x-y-z
space is equal to

γ = γmax x
2 + γmed y

2 + γmin z
2 (3.2)

where the x-y-z coordinates are chosen to match the directions of the main axes
in the system [2]. The x-y-z coordinates lie on a sphere x2 + y2 + z2 = 1 because
they are the components of the dipole orientation vector ed. The x, y and z
coordinates are conveniently transformed to a spherical coordinate system. For an
emitter in our experiment closer than 100 nm to the interface γmax = γmed = γ‖
and γmin = γ⊥. For emission near an interface equation 3.1 can be simplified to

f(t) = I0

∫ π/2

0

dθ (γ‖ sin2 θ + γ⊥ cos2 θ) e−(γ‖ sin2 θ+γ⊥ cos2 θ)t sin θ (3.3)

To calculate the distribution of decay rates that is expected in the experiment
a Monte Carlo method was used. Monte Carlo methods are a class of compu-
tational algorithms that rely on repeated random sampling to compute results
[19]. Since we have a large number of emitters with a randomly oriented dipole
moment, we calculate for a certain number of emitters N the decay rate, where
the orientation of the dipole moment for each emitter is generated randomly. The
sum of exponentials of these decay rates weighed with the decay rate gives the
overall decay curve of the ensemble. If a sufficient number of emitters is chosen,
the results converge to the analytical decay curve f(t) presented in equation 3.3.
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Figure 3.3.: The error in % is shown of the Monte Carlo simulation compared to
the analytical decay curve. Shown are 10 realisations of ensembles
consisting of N = 10, 1000 and 10000 respectively for the light grey
dashed, the grey dash-dotted and the black solid lines. The time axis
is normalised to the decay rate in a homogeneous medium.

In fig. 3.3 the error in % is shown of the Monte Carlo simulation compared to
the analytical decay curve for an ensemble of N = 10, 1000 of 10000 emitters.
The time axis is normalised to the decay rate in a homogeneous medium γ. The
values for γ‖ and γ⊥ are chosen identical to the experimental situation. For each
number of emitters N , 10 realisations are calculated to show the typical variation
in calculated decay curve. For N = 10000 emitters at γt = 11 ns there is a 5 %
variation in the calculated decay curve, compared to 14 % for 1000 emitters and
as much as 85 % for 10 emitters. Distributions are calculated with the Monte
Carlo method for 10000 individual emitters in this chapter.

3.3. Results
In fig. 3.4 results are presented of time resolved emission from R6G from a 21
nm thick layer of PVA on a glass substrate and from the homogeneous refer-
ence system with an added layer of PS. Measurements were performed on the
same sample, before and after depositing the thick PS layer. In fig. 3.4 a) the
experimentally measured decay curves are shown. Time resolved emission from
dye in the homogeneous medium shows a single exponential decay with a decay
rate γhom = 0.35 ns−1. When the R6G molecules are close to an interface, the
decay curve becomes non-exponential. The vertical dashed line indicates the in-
tersection of the two measurements. In fig. 3.4 b) the calculated decay curves are
shown. In a homogeneous medium, a single exponential is expected with γ = 0.35
ns−1 in good agreement with previous experiments [16]. The decay curve for an
ensemble of dye molecules close to an interface is calculated with equation 3.3.
The curve is seen to be clearly non-exponential. Again the vertical dashed line
indicates the intersection of the two calculations. The intersection occurs at the
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Figure 3.4.: a) The measured decay curves for R6G in a homogeneous medium
and and 10 nm from an n = 1.52/n = 1 interface (black and grey
data respectively). b) The calculated decay curves for an ensemble
of emitters in the experimental configuration. The vertical dashed
lines indicate the intersection of the exponential and non-exponential
curves.
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Figure 3.5.: In the top panel the experimental and analytically calculated decay
curves are shown that are measured at 10 nm to the interface. In the
bottom panel the residuals are shown, calculated as Iexp − Itheory.

same time delay as in the experiment. The agreement between experiment and
theory is very good especially considering that there are no free parameters in
the calculation.

In fig. 3.5 both the experimental and calculated decay curves are shown for
dye near the interface. The agreement between the experimental and theoretical
curve is very good since the residuals are centered around zero, as shown in
the bottom panel. At t < 2.5 ns the agreement is not as good, because our
experimental curve is convoluted with the instrument response function for these
short timescales while this is not the case for the theoretical curve.

In fig. 3.6 the distribution of decay rates is shown that we have calculated
for our sample geometry. The distribution is highly asymmetrical. It is strongly
peaked at the value for the parallel decay rate, since in three dimensions, there are
two orthogonal directions that have a parallel dipole orientation, while there is
only one direction for the perpendicular orientation. While considerable success
has recently been achieved with parametrised decay rate distributions [10–12] the
shape of the distribution is quite different from any functional form (lognormal,
gammafunction) considered so far. This shows that the ability to know the
distribution a priori is even more powerful than parametrising.

To verify that the angle dependence of the detection of the decay curve, the
term A(θ, φ) in eq. 3.1, can be neglected, we have performed measurements of
the decay curve for different angles with respect to the normal to the interface,
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Figure 3.6.: The distribution of decay rates calculated with the Monte Carlo
method is shown. The parallel and perpendicular decay rates are
indicated.

Figure 3.7.: Decay curves that are measured for different detection angles with
respect to the normal to the interface.

54



Conclusions 3.4

see fig. 3.7. No significant difference in the decay curve is found for external
angles ranging from 0 to 75◦. Even though the radiation pattern of an emitter
close to an interface is strongly dependent on orientation of the dipole [20], in
our experiments no effect of this distribution on the decay curve is found. This
confirms our choice to neglect the detection angle dependence.

3.4. Conclusions
We have measured time resolved emission from an ensemble of R6G dye molecules
near an interface. Depending on dipole orientation a difference of a factor of 2.6
in the local density of states was expected. A clear non-exponential decay is
observed from this ensemble of emitters. The ensemble decay curve shows single
exponential decay when a layer is added to remove optical interface effects. A
theoretical decay curve only taking into account the dipole orientation agrees very
well with the experimental decay curve. This result allows us to, for the first time,
model ab initio the decay rate distribution analytically in stead of assuming a
certain shape of the distribution like a lognormal or gamma distribution [10, 12].
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Chapter 4

Measuring emission from
silicon photonic crystals

The seminal paper of Yablonovitch in 1987 [1] inspired a quest for photonic
crystals with a band gap, a frequency range for which no modes exist. Excited
emitters placed inside a photonic crystal with their emission frequency in this
band gap will not be able to radiatively decay spontaneously because there are
no vacuum fluctuations allowed in the photonic band gap, giving ultimate control
over spontaneous emission.

The relative frequency width of the dominant stop gap, a gap in the band
structure for one particular direction is an experimentally accessible gauge of the
photonic interaction strength between light and the crystal. The relative width
is determined by crystal parameters, including crystal symmetry, the effective
refractive index and refractive index contrast [2–4]. When stop gaps for different
directions overlap in frequency a band gap is formed. In general, the higher the
refractive index contrast, the stronger the interaction of light with the photonic
crystal leading to wider frequency ranges for photonic band gaps. For this reason,
silicon has long been a material of choice to fabricate photonic crystals, since it
has a high refractive index of about 3.5. Another big advantage of using silicon
is that there is a huge amount of technology already developed, since computer
chips are mainly created from silicon wafers. Silicon photonic crystals fabricated
from wafers could therefore potentially also offer a easy integration into existing
circuitry. However, fabricating periodic structures with wavelength-sized features
in silicon is no easy task, see, e.g., [5].

A first candidate for a silicon band gap photonic crystal is the inverse opal,
consisting of fcc stacked air spheres with a backbone material of high refractive
index material [6]. These inverse opals can have a band gap in case of sufficient
refractive index contrast above 2.8 [7, 8]. Silicon inverse opals are fabricated
and show high reflectivity [9, 10]. This type of crystal can in theory reach a
relative width of 12 % when the backbone is carefully tailored [11]. However, the
band gap in fcc structures is very sensitive to fabrication errors [12]. Crystals
with simple cubic symmetry can also form a band gap. This band gap can
have a maximum relative width of 13 % using silicon [13]. However, again this
broad band gap is very sensitive to fabrication errors, similar to fcc structures.
Structures have been fabricated in silicon with simple cubic crystal structure by
means of photo electrochemical etching. The crystals show high reflectivity in
the infrared [14, 15]. However it is hard to scale down these structures to telecom
wavelengths.

Diamond-like photonic crystals offer a more substantial band gap compared
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to the previously mentioned structures, and can reach this gap with less refrac-
tive index contrast. Another benefit is that for these structures the band gap
is in the range of first order Bragg diffraction, only needing scattering from the
nearest neighbors in the reciprocal lattice, making it less sensitive to structural
disorder. One type of crystal has been proposed by Yablonovitch et al. [16] and
demonstrated in the microwave region, but is extremely hard to make in the op-
tical domain [17]. Woodpile photonic crystals were introduced in reference [18].
These structures are fabricated by stacking layers of dielectric rods which limits
the structure to (at most) 8 or 9 layers. Reflection and transmission measure-
ments performed on these woodpiles show strongly photonic behavior [19–22].
However the stacking process introduces alignment errors since it consists of
many fabrication steps that limits the crystal size. Inverse woodpile structures
were also introduced by Ho et al. [18]. These consist of two identical pore sets
etched in a high refractive index medium. The advantage of inverse woodpiles
over woodpiles is that the filling fraction can be optimised, since the pores can
overlap. Another advantage is that these inverse woodpiles can be fabricated
with only two etching steps. These structures promise a broad first order band
gap with a relative width of 25 % [18, 23, 24] when fabricated of silicon.

For the first time, these silicon inverse woodpile photonic crystals have been
used for emission measurements, by infiltrating the crystals with PbS quantum
dots. In chapter 5 and chapter 6 of this thesis these emission experiments are
discussed. Therefore in this chapter, the inverse woodpile photonic crystals, the
quantum dots and experimental setup used will be described, including alignment
and modeling procedures.

4.1. Sample fabrication and optical characterization
To create an inverse woodpile structure we have devised a CMOS compatible
method to etch two orthogonal sets of pores [5, 25–27]. First, a centered rectan-
gular array of air cylinders is etched in silicon by means of reactive ion etching
(RIE). The lattice spacing in one direction is

√
2 times the spacing in the other

direction a =
√

2c. A drawing of this lattice is shown in fig. 4.1 a). With this
RIE step, a two dimensional (2D) photonic crystal is formed. To realize the
refractive index modulation in the third dimension, the 2D crystal is cleaved.
Perpendicular to the existing first set of pores a second set of pores is made.
This is done by first defining a mask of the same centered rectangular lattice
by focussed ion beam (FIB) milling. The inverse of this mask is etched using
an identical RIE step, creating a three dimensional (3D) photonic crystal. A
schematic representation of the 3D structure is shown in fig. 4.1 b).

In fig. 4.2 a scanning electron microscope (SEM) picture of a typical sample
is shown. The pores that are etched in the first direction have a depth of ap-
proximately 6 µm. The size of the 3D crystal is limited by this depth of the first
set of pores and by the field of view of the FIB that is used to create the mask
for the second set of pores. The 3D crystal dimensions are approximately 6 by
8 by 6 µm. Alignment of the second set of pores with respect to the first set is
crucial to get a broad band gap [24]. By visual inspection of the SEM picture this
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a) b)

Figure 4.1.: a) Schematic of the 2D crystal. The two directions parallel to the
a and c axes, respectively ΓM’ and ΓK, are indicated. b) A part of
the 3D crystal structure. Lines indicate edges of the unit cell. Two
directions along the first and second etch direction are indicated by
ΓZ and ΓX respectively. Illustration courtesy of Simon Huisman.

Figure 4.2.: Scanning electron micrograph of a part of the structure. The top of
the picture shows the pores in the first etch direction. The second
set of etched pores are shown in the center. The scale bar is 2 µm.
Image made by J. M. van den Broek.

alignment can be estimated so that emission experiments are performed only on
well aligned crystals. The tapering of the pores has been studied. This tapering
is < 0.1◦ for the first etch direction and is approximately 1◦ for the pores in the
second etch direction. A tapering of 1◦ is known from calculations to narrow the
photonic band gap frequency range [24]. However, in reflectivity measurements
broad stop bands are observed, showing strong peaks in the presence of some
tapering.

The optical quality and photonic strength of the fabricated silicon structures

61



Chapter 4 Measuring emission from silicon photonic crystals

have been investigated by measuring reflectivity of the crystals. The results of
typical reflectivity measurements for a 3D and a 2D photonic structure are shown
in fig. 4.3. The crystals are investigated from two different directions for two
orthogonal polarisations. A more thorough analysis of the reflectivity data is
beyond the scope of this thesis and can be found elsewhere [28, 29].

For a 3D structure a reflectivity measurement is shown in fig. 4.3 a). The
structure is probed along the first etch direction (ΓZ) and the second etch direc-
tion (ΓX) with a polarisation either parallel or perpendicular to the pores. Clear
peaks in reflectivity are seen, with a height of approximately 60 % and a relative
width of 20 % for the 3D structure, indicating that the structures are of very high
optical quality. Most importantly the reflectivity peaks overlap for all directions
and polarisations measured. This frequency region is indicated with the grey bar.
This overlap of the reflectivity peaks is a clear indication of a photonic band gap.

Reflectivity results for a 2D structure are shown in fig. 4.3 b). Here two differ-
ent directions in-plane are probed, indicated by ΓM’ and ΓK. The polarisation
is either TE oriented (perpendicular to the pores) of TM oriented (parallel to
the pores). Very broad high reflectivity features are seen in the reflectivity mea-
surement. The observed peaks agree well with expected stop gaps from band
structure calculations. For TE polarised light the peaks in the ΓM’ and ΓK di-
rections overlap, indicative of the TE 2D band gap expected from calculations.
The reflectivity for the 2D crystals is in general higher than the reflectivity of
the 3D structures, probably because of a better surface quality of the measured
structures.

a) b)

Figure 4.3.: a) Reflectivity spectrum of a 3D photonic crystal, measured along
two different directions and polarisations. b) The reflectivity spec-
trum of a 2D photonic crystal, measured along two different in-plane
directions with two different polarisations.
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4.2. Quantum dots
Because silicon absorbs light with an energy larger than the electronic band gap
of about 1.12 eV (1100 nm), it is not possible to use visible emitting quantum dots
or molecules to probe the density of states inside the photonic crystal. There-
fore PbS quantum dots suspended in toluene are used that are purchased from
Evident. These quantum dots emit around 0.85 eV (1460 nm). An emission
spectrum is shown in fig. 4.4 a. The broad emission spectrum is mostly caused
by inhomogeneous broadening due to size polydispersity (see appendix A). It
is estimated by Evident that these quantum dots have a quantum efficiency of
30-50 %.

a) b)

Figure 4.4.: a) The emission spectrum of an ensemble of PbS-1500 quantum dots.
The steep edge at low energy is caused by the cut-off of the detector.
The lack of data points around 0.94 is caused by dead pixels of the
detector. b) The decay curve measured at 0.85 eV together with a
single exponential fit.

PbS quantum dots in suspension show single exponential decay. These quan-
tum dots have a typical decay rate of 1.9 µs−1 in toluene. A decay curve of PbS
quantum dots emitting at 0.85 eV is shown in fig. 4.4 b, together with a single
exponential fit. The goodness of fit χ2

red is 1.03 close to 1 thus indicating a good
fit. All measurements shown in this thesis on PbS quantum dots are performed
at room temperature.

4.3. Experimental set-up
A schematic of the experimental setup is shown in fig. 4.5. Light pulses with
a pulse width of 11 ps from a pulsed frequency doubled Nd3+:YAG laser (Time
Bandwidth Cougar) at λ = 532 nm with a repetition rate of 409 kHz are used
to excite the quantum dots. The light is focused with an NA=0.12 4X objective
(o2), which will be called the excitation objective. The laser power is kept suffi-
ciently low so that the quantum dot excitation stays in the linear regime, where
emitted power is proportional to excitation power. Emitted light is collected at
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an angle of 90 degrees to the excitation path where a second objective (o1) is
placed with NA=0.7 100x with a relatively long working distance of 6 mm. This
objective is used to collect quantum dot emission signal and will be called the
detection objective. The detection objective is mounted on an x-y-z piezo stage
for alignment purposes. Laser light can also be sent through the detection objec-
tive by flipping down the flip mirror (fm), via a dichroic mirror (dm) that reflects
light with wavelengths below 670 nm. The sample is placed on a x-y translation
stage to locate regions of interest on the sample. The image of the sample can be
viewed on the CCD camera to facilitate alignment. More details of this set-up
can be found in reference [30].

Light emitted by the quantum dots is collected via the detection objective,
passes through a 1100 nm long pass filter (f1) to filter out stray laser light, is
dispersed by a grating and is imaged onto a liquid nitrogen cooled InGaAs array
diode. The array is sensitive from 1000 to 1650 nm to measure emission spectra.
Alternatively, the time-resolved emission is detected with a Hamamatsu NIR
photomultiplier tube (PMT). The selected emission energy range that is detected
by the PMT is set by a slit width, and is chosen to be approximately 3 meV.
The PMT is connected to a Picoquant PicoHarp 300 timing card. By measuring
the time difference between the laser pulse signal generated by a diode in the
laser and the detection pulse of the PMT, we obtain a histogram of the decay:
a decay curve [31]. This method is also called time correlated single photon
counting (TCSPC). An optional polariser (p1) can be added to the detection
path to select either TE or TM polarised emission light.

The time-resolved data needs to be processed before it can be used. Most im-
portantly the background must be removed. Since we are performing experiments
in the near infrared spectral region, the background contribution is substantial.
Even with the peltier-cooled PMT approximately 3 · 105 dark counts per second
are recorded. The number of signal counts is typically 1 % of the repetition fre-
quency, or 4 · 103 signal counts per second. Since the signal counts are correlated
with the laser start signal, they can be separated from the background that is
uncorrelated and adds a constant background level. This constant background
level is determined by averaging the data in the 6.4 ns time interval before the
laser pulse.

4.4. Sample holder
The sample consists of a small bar of silicon of approximately 500 µm by 500 µm
by about 2 cm in which pores are etched at certain locations. To hold this sample
a custom holder is made out of stainless steel and polychlorotrifluoroethylene (a
type of teflon that is more rigid than normal teflon) that clamps the sample while
leaving the etched areas free for probing with the optical setup. Photographs of
this sample holder are shown in fig. 4.6.

This entire sample holder including sample is placed in a Hellma fluorescence
cell, fixed to the wall of the cell from the outside with magnets and immersed
with quantum dots in suspension. The concentration is 2 · 10−6 M PbS in
toluene, leading to an estimated 1.2 · 106 quantum dots in the focus if the focal
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Figure 4.5.: Schematic of the experimental setup to measure near infrared emis-
sion. The excitation light is guided with a flip mirror (fm) to the ex-
citation objective (o2) to be focused on the sample. Emitted light is
detected with the emission objective (o1), passed through a dichroic
mirror (dm), a filter to block stray laser light (f1), an optional po-
lariser (p1) and focused with a lens (l1) through the slit of a grating
spectrometer. The light is detected either with an InGaAs diode
array to measure the spectrum or sent to the PMT via a lens (l2).

volume is 10x10x10 µm in suspension. By leaving the quantum dots suspended
in toluene, the photo physical properties remain stable for months, much longer
than the one day stability when dried [32]. Even when kept in nitrogen gas
atmosphere to prevent photo oxidation the optical properties of dried quantum
dots are unstable. Since sample fabrication of the Si structures is a complex
procedure involving many fabrication steps, this one day time limit for optical
measurements would be prohibitive.

There are, however, two disadvantages to immersion in suspension. One dis-
advantage of placing the entire structure in toluene is that the refractive index
contrast of the photonic crystal is decreased, since toluene has a refractive index n
of 1.5 compared to n=1 in air. Fortunately, however, even with lowered refractive
index contrast the crystal scatters light sufficiently strongly to show a 3D band
gap in band structure calculations. The relative width of the gap is decreased
from 25 % for Si-air to 8.5 % for Si-toluene, which is still larger than the relative
gap width of silicon inverse opals (see chapter 5). The other disadvantage is that
emitted light does not only originate from quantum dots in the photonic crystal
but also from the direct surrounding of the crystal. Aligning the photonic crystal
and excitation focus with respect to the detection focus is crucial for successful
measurements. In the next paragraph the alignment procedure is discussed.

4.5. Aligning of photonic crystals
A schematic of how the sample is placed in the setup is shown in fig. 4.7. The
detection focus can be positioned on a 2D or 3D part of the structure, using the
translation stage and the piezo actuators with an accuracy of 10 nm [30]. The
detection focus objective is attached to an x-y-z manual translation stage with
an accuracy of 10 µm. When the detection focus is placed in suspension, the
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a) b)

Figure 4.6.: The sample holder that was designed for these types of samples. In
a) the empty holder is shown, in b) a piece of silicon is inserted.

Figure 4.7.: A schematic drawing of how the sample is positioned in the setup.
The excitation focus is scanned in the y direction indicated by the
arrow.

location of the excitation focus is optimized by maximizing the detected signal
from the quantum dots. When positioned over the silicon structure the height
of the detection focus is optimized by scanning the height of the detection focus
along the y direction indicated by the arrow in fig. 4.7. In this way the edge of
the structure is determined precisely.

Such a scan along the y direction is shown in fig. 4.8. Here the peak intensity at
0.842 eV (1475 nm) is plotted versus the translation of the excitation focus. The
black squares correspond to the situation as shown in fig. 4.7 in which a photonic
crystal is placed in the detection focus. A clear transition to lower intensity is
seen. The gray circles indicate the same scan, but now performed with the
detection focus on the bare silicon wafer next to the crystal. A similar transition
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Figure 4.8.: Scanning the excitation focus in height for three different situations:
On a photonic structure (black squares), in silicon wafer (gray circles)
and in suspension (light gray triangles). Lines are guides to the eye.
The intensity measured in suspension is scaled down by a factor 1

3
for comparison.

is seen. However, the intensity is about half of the intensity when focusing on
the photonic crystal. We conclude from this graph that when measuring on the
photonic crystal approximately half of the intensity is emitted by quantum dots
inside the photonic crystal while the other half of the intensity originates from
outside the structure. For reference a similar scan is shown in suspension when no
silicon structure is present (light gray triangles). No sharp transition in intensity
is visible.

By performing such a y-scan before measuring spectra and decay curves, the
ratio of light coming from the structure is determined. A typical set of emission
spectra for different y-positions is shown in fig. 4.9. Here the ratio of the emission
spectrum measured on the photonic crystal and the spectrum when focused on
silicon is shown. This particular crystal structure shows narrow features in the
emission spectrum (details can be found in chapter 6). It can clearly be seen
that first the spectrum is similar to the spectrum above silicon (y = 0) but when
the excitation focus is moved onto the photonic structure (y = 40 µm) the ratio
increases and clear peaks appear above 0.85 eV. The ratio decreases again slightly
and peaks get less pronounced when the excitation focus is moved further.

Fig. 4.10 shows a spectrum from this same photonic crystal with features in
gray. The black line shows the emission spectrum from the same structure but
excited through the detection objective. Peaks in the emission spectrum are now
no longer visible, because a much larger part of the total spectral intensity is
emitted by quantum dots outside the photonic crystal structure. We have tried
to use a confocal pinhole to exclude this out-of-focus light of the surrounding
quantum dots. However, adding a pinhole reduces the measured intensity drasti-
cally and does not show more clearly visible peaks. This is probably due to extra
abberations introduced by the thick glass wall of the fluorescence cell.
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Figure 4.9.: The relative spectrum is shown of the emission spectra measured on
the photonic crystal and the spectrum above silicon. The y-location
is indicated in the legend. When scanning the excitation focus on to
the structure, clear peaks appear in the emission spectrum.

Figure 4.10.: Two emission spectra from quantum dots in a 2D photonic crystal
are shown. When exciting through the detection objective, no fea-
tures are visible, while clearly peaks are seen when exciting through
the excitation objective.
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Figure 4.11.: The decay curve of quantum dots measured in a photonic crystal
is shown. The lines are decay in suspension (light grey), a single
exponential fit to the data (grey line) and a bi-exponential fit (black
line). In this case a=1, b=0.77 and I0=16103.

4.6. Modeling of time resolved measurements
Since we know from the y-scan of the excitation focus that part of the light orig-
inates from quantum dots in suspension and part of the light originates from the
photonic crystal, a double exponential model is a logical choice. Therefore, the
decay curves are modeled using a double exponential model with two independent
adjustable parameters:

f(t) = I0(a exp(−γsuspt) + b exp(−γcrystalt)) (4.1)

The first term of the intensity originates from outside the structure and has a
decay rate given by the rate in suspension γsusp that is independently determined
by measuring on a suspension of quantum dots. The second term of the intensity
of the light originates from the photonic crystal and has a decay rate γcrystal
that we want to retrieve. The value of a and b are determined independently
by performing a y-scan of the detection focus as described in paragraph 4.5, by
comparing the intensity when measuring emission from the structure or on bare
silicon, see for instance fig. 4.9. The only unknown parameters that remain are
γcrystal and I0.

In fig. 4.11 an example of a measured decay curve is shown. The black line
shows the fit performed with the double exponential model eq. 4.1. This model
gives a goodness of fit χ2

red of 1.025 indicating a good agreement between data
and model. We find a photonic crystal decay rate γcrystal=2.76 µs−1. The data
can also be modeled with a single exponential decay (grey line), giving a χ2

red

of 1.027 and a decay rate γ=2.16 µs−1 is found. On the basis of the value
of χ2

red or the residuals (not shown) there is no preference for one model over
the other. However, since we know from measurements that part of the light
originates from outside the crystal structure and part from within, it is much
more reasonable to fit with a double exponential model than a single exponential
model. Note that the number of free parameters remains the same, namely 2.
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For reference, the decay in suspension is shown in fig. 4.11 by the light grey line
with a decay rate γ=1.85 µs−1. Clearly the decay measured and the suspension
fit do not match, also indicated by the higher χ2

red which is 1.282. Thus the decay
rate found when measuring emission from quantum dots in a photonic crystal is
significantly different from the decay rate in suspension.

4.7. Calculating band structures and DOS with MPB
The freely available program MIT Photonic Bands (MPB) [33, 34] was used to
calculate band structures and the density of states (DOS) inside photonic crystals.
This program computes definite-frequency eigen states of Maxwell’s equations in
periodic dielectric structures for arbitrary wave vectors, using a plane wave basis.

We performed calculations on a grid of size 70 x 100 x 70 using ε = 12.1 for
silicon, ε = 1 for air and ε = 2.25 for toluene. A band structure is shown for a
3D crystal in fig. 4.12 a). The corresponding first Brillouin zone is shown in fig.
4.12 b). For the band structure 72 wave vector points are used, taking about 3
hours to calculate.

a) b)

Figure 4.12.: In a) a band structure is shown of a 3D structure for r/a=0.24 made
from silicon (ε=12.1) in air (ε=1). The band gap is indicated with
the grey bar. In b) irreducible part of the first Brillouin zone is
shown of the 3D structure. Letters mark points of high symmetry
on the lattice.

Since we measure on an ensemble of quantum dots, we have to average the
local density of states over all these positions and dipole orientations. Since
the quantum dots are moving freely in suspension, a random distribution of
dipole moments is expected. Because of this reason we use the unit cell averaged
local density of states, which is called simply the radiative density of states
(DOS). As an extra advantage, this quantity is far more easily calculated than
the local density of states since it only involves solving the eigen values of the
Maxwell equations while for the local density of states the eigen functions also
need to be computed. A better model for the measured ensemble averaging
would be to calculate the LDOS for all positions only in the pores of the crystal
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for different dipole orientations since the DOS also takes into account locations in
the silicon, where no quantum dots are present. However, this is computationally
too extensive and will take at least several months to calculate, see, e.g. [35].

The DOS is calculated using a random selection of 2000 wave vector points
in the first Brillouin zone of the lattice. For a 2D photonic crystal, the density
of states is calculated in 3 dimensions. The length of the third direction in
which the crystal is not periodic can be set arbitrarily, and is chosen such that
it corresponds to the 3D first Brillouin zone for convenience. All plots of the
density of states in this thesis are scaled to the density of states in a vacuum
such that in vacuum for normalised frequency 1 the DOS is unity. A frequency
spacing of 0.005 is used when calculating the histogram of the DOS.

To verify the correctness of the DOS calculation, our results are compared to
the analytically known DOS in free space and calculations performed by Hille-
brand et al. [23] for inverse woodpiles structures. In fig. 4.13 a) the DOS is
shown for a vacuum by calculating the DOS for an empty crystal, where the
refractive index contrast is 0. The DOS is clearly seen to follow the quadratic
behavior expected for a homogeneous medium. In fig. 4.13 b) a comparison is
shown between our calculations and data from reference [23]. Our calculation
reproduces their result well, validating our calculations.

a) b)

Figure 4.13.: In a) the calculated DOS is shown for vacuum. The line shows
the analytical quadratic function. In b) a comparison is shown of
our DOS results in units of ω2/π2c3 per volume with calculations
performed by Hillebrand et al. [23]. The agreement is very good.
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Chapter 5

Controlling the emission of
PbS quantum dots with 3D
silicon photonic crystals

Photonic crystals are periodic structures that strongly modify the dispersion of
light. As was first realised by Bykov [1] and Yablonovitch [2] there may be a
frequency range for which no modes exist in these photonic crystals, in analogy
with the band gap of semiconductors in solid state physics. As a fundamental
consequence, an excited atom will forever remain in its excited state since it can
not decay by emitting a photon. Since these seminal papers many experiments
have been performed and published that have claimed to see band gaps. At first,
attention was focused on measuring the reflectivity (or transmission) of photonic
crystals. However it was later realised that other effects, like odd-symmetry
modes, grating modes and slow modes could lead to strong reflection peaks that
are not at all related to the modified density of states in the photonic crystal,
see e.g. [3–5]. Much experimental effort became focused on measuring emission
from photonic crystals to study the existence of a band gap. Both experiments
measuring the intensity and measuring the decay were pursued.

In literature very often a trough in the spectrum of an emitter has been linked
to a photonic band gap or inhibition [6–10]. However, these structures are often
made with low contrast media which do not show a band gap or strong LDOS
modification but a stop gap in a certain direction making the inhibition of spon-
taneous emission for these structures very unlikely. In contrast, the local density
of states is an angle integrated property, and is not necessarily modified when
there is either a Bragg condition for one direction or a strong reflection peak [11].
By measuring the angle integrated intensity a clear minimum is observed that
obeys the Bragg law, showing inhibition of the spontaneous emission [12, 13].

Since Fermi’s Golden Rule relates the local density of states directly to the
radiative decay rate, measuring this quantity seems the easiest route to show a
band gap or pseudo gap in the LDOS. Pioneering experiments were performed on
colloidal crystals that have a low refractive index contrast [14]. A modification of
the decay rate was found, but was probably caused by a change in the chemical
environment of the emitters [15]. It is therefore very important to keep the chem-
ical environment of the emitters constant to ensure that only the radiative decay
rate is changed. Finding a good reference is crucial to a successful demonstration
of emission control. As explained in ref. [16], one suitable reference system is
a photonic crystal in the long wavelength limit where the LDOS has a known
ω2 frequency dependence. In 2004 Lodahl et al. [17] were the first to show a
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significant effect on the decay rate while keeping the chemical environment con-
stant. Later it was realised that in two dimensional photonic crystal membranes
the emission rate can also be modified substantially as shown in experiments
[18–21] and calculations [22]. The 2D slab measurements benefit from the fact
that quantum dots are used with a fixed dipole orientation that is always in the
plane of the membrane. The LDOS for this dipole can be very low, while the
LDOS for a dipole that is oriented perpendicular to this plane is hardly modified
[22]. None of these structure show a 3D photonic band gap, a frequency range
where there are no modes at all for any arbitrary dipole orientation.

In this chapter experiments will be discussed on emission of PbS quantum
dots inside 3D silicon inverse woodpile photonic crystals that are expected to
have a broad band gap. It will be shown that both the decay rate and emission
spectra of the emitters is strongly modified by the photonic crystal and show
good agreement with the calculated density of states for these structures.

5.1. Samples

For our measurements 3D silicon inverse woodpile crystals are used. Details on
fabrication of these samples can be found in chapter 4. The lattice parameter a
of all the structures is fixed by the mask used for the first etch direction. For all
structures discussed here a = 693 nm. By changing the diameter of the pores,
a different filling fraction of silicon is obtained, giving a different band structure
and DOS. Diameters of 2r = 271, 290, 340 and 361 nm are used. These diameters
are determined with SEM, and have an accuracy of about 5 %.

In fig. 5.1 a) a calculated band structure is shown for a 3D inverse woodpile
crystal with a pore diameter of 340 nm filled with toluene (the liquid in which the
quantum dots are suspended). Clearly a band gap is present, indicated by the
grey bar. In b) the corresponding DOS calculation is shown. For lower frequency
the DOS follows the quadratic relation of a homogeneous medium. Since at a
frequency of 0.35 the frequency gets into the photonic regime the DOS starts to
deviate from the quadratic case.

When increasing the diameter of the pores, the center frequency and the rel-
ative width of the band gap shift up, because the volume fraction of silicon is
decreased. This shift is shown in fig. 5.2. Here the lower and upper edge of the
band gap is plotted versus the normalised radius r/a. The dashed area indicates
the region of parameter space that is in the band gap. On the right axis the
relative width of the band gap is plotted in grey. The band gap is widest - 8 %
relative bandwidth - at approximately r/a = 0.22.

All measurements on 3D photonic crystals were performed in the Γ X direction
parallel to the second set of etched pores (see fig. 4.1 b)).
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Figure 5.1.: a) The first 8 bands of a band structure of a 3D inverse woodpile
photonic crystal structure are shown for a pore diameter of 340 nm,
giving r/a=0.245. This structure consists of silicon (ε=12.1) and the
pores are filled with toluene (ε=2.25). The band gap is indicated
with the grey bar. b) The density of states per volume in units of
ω2/π2c3 for the same structure. The dotted line is a quadratic fit
in the low frequency limit, where the crystal acts as a homogeneous
medium. The DOS is calculated with 2000 k points.

Figure 5.2.: The frequency position of the band gap as a function of the nor-
malised radius of the pores is shown in black. On the right axis the
relative width of the band gap is plotted in grey.
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5.2. Role of quantum efficiency and local density of
states

The decay rate that is measured in experiments is the total decay rate γtot which
consists of a radiative and a non-radiative part:

γtot = γrad + γnrad (5.1)

In the radiative process the emitter returns to the ground state through emis-
sion of a photon. The emitter can also return to the ground state non-radiatively,
for example by generating phonons. The quantum efficiency (QE) of an emitter,
given by

η =
γrad
γtot

(5.2)

gives the fraction of excitation energy that is transferred to spontaneous emis-
sion. Depending on the value of the QE the (local) density of states will have a
different effect on the emission [13, 16].

If the QE is 100 % all the absorbed energy is converted into light and γtot =
γrad. Since the local density of states only affects the radiative decay rate (see
chapter 1), modification of the measured total decay rate will be proportional
to the LDOS change. However, the intensity emitted by the emitters is not
dependent on the LDOS but only proportional to the pump intensity, since each
pump photon is converted to an emitted photon.

If the QE is very low γtot ≈ γnrad. In this situation modifying the density of
states hardly affects the measured total decay rate. However, the modification of
DOS can now be seen in the emitted intensity, since this is proportional to γrad.

The PbS quantum dots that are used in our experiments have an estimated
quantum efficiency of 30 - 50 %. This quantum efficiency is determined by com-
paring the emitted intensity of quantum dots to a dye with known efficiency
(IR125 in DMSO) [23]. However, this way of determining the quantum efficiency
is known to underestimate the value of the quantum efficiency for blinking emit-
ters [24].

In cases where the quantum efficiency is neither unity nor very low, both
the intensity and the decay rate can be modified by the LDOS. To complicate
matters further, for emitters in an environment with inhomogeneous LDOS, the
quantum efficiency also depends on frequency, position and dipole orientation,
since the radiative decay rate is modified by the LDOS. In appendix B a more
thorough analysis can be found of the effect of local density of states on the
emitted intensity. Even for quantum efficiencies as high as 90 % the intensity
can be modified substantially.

In the following sections results of measurements of decay rate and emitted
intensity of PbS quantum dots inside 3D inverse woodpile photonic crystals will
be discussed respectively.
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Figure 5.3.: Two decay traces measured at 0.850 eV are shown, that are measured
in two different photonic crystals with a pore diameter of 340 nm
(closed squares) and 271 nm (open circles). Bi-exponential fits are
indicated by the curve (black solid for 340 nm and dash-dotted for
271 nm). In the lower panel the residuals are seen to be random
indicative of good fits.

5.3. Measured decay rates compared to DOS

The decay rate has been measured for three different emission energies: 0.828 eV
(1500 nm), 0.850 eV (1460 nm) and 0.893 eV (1390 nm) with a spectral width of
0.003 eV. In fig. 5.3 two decay curves are shown. Both decay curves are measured
at 0.850 eV. There is a clear difference between the curve measured from the d =
340 nm structure compared to the measurement from the d = 271 nm photonic
crystal. This difference confirms that the emission by excited quantum dots is
clearly controlled by the inverse woodpile crystals. The curves indicate the fits
that were used to extract the decay rate. For the fitting procedure of the time
resolved measurements see paragraph 4.6. A decay rate of 3.1 and 0.88 µs−1 is
found respectively for quantum dots inside the photonic crystal. Therefore these
two crystals results are enhanced and inhibited compared to the quantum dots
in suspension. In the bottom panel the residuals are plotted. Both residuals are
centered around 0 indicating a good fit, as also confirmed by the goodness of fit
χ2
red that is 1.01 and 0.93 close to unity.

In fig. 5.4 a) to d) both the measured decay rate (filled symbols) and the DOS
(open symbols connected with a guide to the eye) are shown for four different
diameters of the pores in silicon. Different squares indicate different measure-
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ments that have been performed on the same crystal and location on the crystal,
but on different days. Therefore, variation of the data gives a measure for the
reproducibility of the measurement.

Different emission energies correspond to a different radii of the quantum dots.
Decay properties of quantum dots are usually dependent on the size of the quan-
tum dot [24–26]. However, the PbS quantum dots used here have within error
margin the same total decay rate of 1.81 µs−1 in suspension, as shown in table
5.1. Moreover, since the chemical environment in the photonic crystal is equal
to that in suspension, we expect that the quantum dots in the photonic crystals
will have the same non-radiative component of the decay rate.

Table 5.1.: Quantum dot total decay rates in suspension

Emission energy (eV) Decay rate (µs−1) error (µs−1)

0.828 1.80 0.04
0.850 1.85 0.09
0.893 1.79 0.06

For all four samples a qualitative or even a quantitative agreement between
the measured total decay rate and the DOS is found. In fig. 5.4 a) the quantum
dot emission is higher in frequency than the band gap. No features are seen in
the decay rate or DOS. In fig. 5.4 b) an enhancement of the decay rate with
more than a factor of 2 is found when increasing the frequency, corresponding
well to the DOS. Most strikingly, in fig. 5.4 c) for the d = 340 nm sample a clear
inhibition of the decay can be seen when the emitters in the band gap are probed
in going from below the band gap to within the gap. A minimum decay rate of
0.16 µs−1 or a corresponding to a lifetime of 6.25 µs is found. The decay rate in
the band gap is a factor of 11 lower than the decay rate in suspension. For fig.
5.4 d) also a clear inhibition of the decay rate is seen for emitters emitting inside
the band gap, in good agreement with a density of states for d = 351 nm. Again
a factor of 11 reduction in the decay rate is found compared to suspension. Since
the diameter of the pores is measured with a 5 % accuracy by SEM the DOS
calculations are performed with a diameter 3 % smaller than d = 361 nm.

5.4. Measured emission spectra compared to DOS
For real emitters with a quantum efficiency smaller than 1 it is expected that
the emitted intensity in the form of emission spectra contains information on the
(L)DOS, see appendix B for more details. Therefore, in fig. 5.5 two spectra are
shown: one measured when the focus is on the photonic crystal (IPhC) and one
when the focus is an the silicon wafer (ISi). See paragraph 4.5 for more details.
These spectra are used to determine the relative emission spectrum Irel, given
by:

Irel =
IPhC − ISi

ISi
(5.3)
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Figure 5.4.: Panel a) to d) show the measured decay rate (filled squares) and DOS
(open circles) for photonic crystals with pore diameters of 271 nm,
290 nm, 340 nm and 361 nm respectively. The dash-dotted curves
are guides to the eye for our experimental results.

Figure 5.5.: The emission spectrum of PbS quantum dots measured when the
focus is on the photonic crystal with a pore diameter of 340 nm
(grey dash-dotted line) and on silicon wafer (black solid line). The
sharp edge at low energy is caused by the cut-off of the detector.
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Figure 5.6.: Panel a) to d) show the emission spectrum from the emitters in the
photonic crystal divided by the reference spectrum measured above
silicon wafer for four different samples. Respectively, diameters are
271, 290, 340 and 361 nm. The calculated relative DOS is also shown.
The dashed line is a guide to the eye.

In fig. 5.6 a) to d) the relative emission spectrum is plotted. A relative spec-
trum in an environment without DOS modification remains constant. Changes
in the spectrum show up as deviations from this constant, illustrated by a line
in fig. 5.6 for comparison. As can clearly be seen in fig. 5.6 c) and d) part of the
spectrum is inhibited. To a lesser extent in figure b) the higher frequency part
is enhanced. In stead of the density of states the relative DOS is now plotted
with the open symbols. The relative DOS is the DOS divided by ω2, since we
are looking at intensity ratios, the ω2 must be divided out [27]. The relative
DOS agrees well with the data. Especially in the range where the band gap is
expected for d = 340 nm and d = 351 nm.

5.5. Measured decay rates compared to emission
spectra

In fig. 5.7 both the measured total decay rate (open circles) and the relative
emission spectrum (black line) are plotted for the four different samples. The
trend of both data sets is qualitatively the same: When there is no change in the
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Figure 5.7.: Panel a) to d) shows both the measured total decay rate (open cir-
cles) and the relative emission spectrum (black line) for four different
samples. The dash-dotted grey line is a guide to the eye.
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decay rate the spectrum does not deviate significantly from a straight line (panel
a)). When the decay rate is enhanced in panel b) the relative emission spectrum
is higher. When inhibition of the decay is measured (panel c) and d)) a clear
change to lower intensity is seen in the relative spectrum.

5.6. Discussion
The average spontaneous emission decay rate measured for quantum dots inside
the band gap is 0.40 µs−1. This is a factor of 4.5 inhibition compared to quantum
dots in suspension with γ=1.81 µs−1. The maximum inhibition of the decay rate
found is a factor of 11. This is measured for quantum dots inside the band gap
frequency range where γtot = 0.16 µs−1. To the best of our knowledge this is
the highest inhibition factor of spontaneous emission in 3D photonic crystals to
date.

Such low emission rates lead to interesting complications. Our experiments are
performed with an excitation repetition rate of 409 kHz, or 0.409 µs−1. This rate
is equal to the average rate found within the band gap frequency range. While
performing time correlated single photon counting it is usually good practice to
use a repetition rate of the excitation laser that is at least 5 times lower than
the decay rate that needs to be measured. However, since in the near infrared
frequency range the signal to noise ratio is low, it is very hard to further reduce the
repetition rate, since our experiments are already performed with typically 3 105

dark counts per second and 4 103 signal counts (about 1% of the repetition rate).
If the repetition rate is chosen too high, there might be a significant contribution
of the signal still present when the next laser pulse arrives, especially for very slow
decay. Since the background in our measurements is determined by averaging
the 4.6 ns before the laser pulse, the background level is overestimated. This
overestimation can affect the found decay curve and value for the decay rate. If
there is still a significant contribution of the signal to this background level, a
too high level will be subtracted leading to an over estimation of the slope and
a higher decay rate. Therefore the values found by us can be considered upper
bounds for the decay rate, but even lower rates might be present.

The photonic band gap, a frequency region with no modes at all, is a theoretical
concept that only exists for infinitely large photonic crystals. Since real photonic
crystals are always of finite size, the zero number of modes limit can never be
reached. From calculations performed by different groups it seems that the DOS
decreases exponentially with crystal size in a photonic band gap [28, 29]. The
maximum factor of 11 found by us could give an indication for the distance from
the surface of the photonic crystal and amount of disorder that the quantum dots
experience. When considering the calculations by Ishizaki et al. [29] for GaAs
woodpile photonic crystals a factor of 11 inhibition relates to about 7 layers of the
woodpile between the emitter and the surface of the crystal. Since our structure
is an inverse woodpile made of silicon it can not be directly compared to this
value, but it might give an indication of the average depth of the quantum dots
we are probing since the photonic strengths are comparable.

When considering the emitted intensity a modification of the spectral shape
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is found when comparing quantum dots in the crystal to quantum dots in sus-
pension. Changes in the emitted intensity do not necessarily only reflect DOS
effects, but may also be caused by redistribution of the emission over different
exit angles. Since our measurements were performed with a high NA objective
(NA=0.7) due to the small size of the photonic crystal no information is obtained
about the angle dependence of the emitted intensity. On the other hand, this
high NA means that the emission is collected for many angles. Since the same
trend is seen in both the decay rate measurements and the emission spectra, it
is very likely that changes in the emission spectrum are directly caused by the
DOS. As is shown in appendix B the quantum efficiency can still be substantial
even when effects in the intensity are found, allowing both the decay rate and
the intensity to be strongly modified.

Performing a saturation experiment may be an alternative way to demonstrate
a band gap. It is good practice to perform spontaneous emission experiments at
excitation powers where only a small fraction of the population is in the excited
state. If one measures the emitted intensity as a function of the excitation power,
a linear relation is found at first. When the excitation power is increased, this
linear behavior levels off, giving a clear sign of saturation. For a two-level system,
population inversion is never reached. For more complicated three- and four-
level systems, the population can be inverted, leading to amplified spontaneous
emission and laser action [30]. The excitation power level at which this saturation
occurs is influenced by the photonic band gap. At saturation, the emission rate
equals the excitation rate, as was demonstrated with quantum dots in cavities
[31]. If the decay rate is very low due to this band gap, all the emitters inside
the structure will lose their excitation energy very slowly, increasing the excited
state population. This causes the emission to saturate at a lower excitation
power than when measuring this same effect outside a band gap. To the best of
our knowledge, this experiment has not been tried before on photonic band gap
crystals.

5.7. Conclusion
We have performed spontaneous emission experiments on PbS quantum dots
in 3D inverse woodpile photonic crystals, including two structures where the
expected band gap overlaps with the emission frequency of the emitters. It is
found that the decay rate is strongly modified by the photonic crystal. In the
band gap range a maximum inhibition of a factor 11 is found compared to the
decay rate in suspension. Strong enhancement of the decay rate is also seen
at frequencies above the band gap. The measured spectra show a change in
spectral shape that agree very well with the measured decay rate modification.
The change in the emission spectra can very likely be attributed to the changes
in local density of states.
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Chapter 6

Emission of PbS quantum
dots in 2D Si photonic crystals

Ever since the seminal article by Yablonovitch [1] a wide field of research has
been dedicated to the pursuit of control over the decay rate of spontaneous emis-
sion with application ranging from thresholdless lasers to solar cells [2, 3]. The
ultimate control over spontaneous emission is obtained when the light emission
frequency overlaps with the frequency range of a band gap in a three dimensional
(3D) photonic crystal. In the complete absence of modes, the decay rate will be
zero.

A two dimensional (2D) photonic crystal can not show a 3D band gap because
it is only periodic in two of the three directions. However, the total solid an-
gle over which light propagation is inhibited by photonic gaps is substantial [4].
From a calculation it is then expected that a modification of the local density of
states (LDOS) is significant: indeed up to one order of magnitude is predicted in
the center of hexagonally periodic pores etched in silicon [5, 6]. The reflectivity
and transmission of macroporous 2D photonic crystals in silicon have been inves-
tigated extensively for hexagonal lattices and show clear stopgaps [7–9]. A big
advantage of 2D photonic crystals is the relative ease of fabrication compared to
3D photonic structures.

For a 2D periodicity combined with a membrane waveguide to provide con-
finement in the third direction extensive measurements have been performed.
It has been shown both theoretically and experimentally that the decay rate is
modified by these membrane photonic crystals [10–14]. The LDOS is influenced
by both the periodicity and waveguiding inside the membrane. The most com-
monly used emitters inside these membranes have an oriented dipole that is in
the plane of the membrane, thereby selecting a subset of the LDOS that shows
strong photonic features to achieve modification of the decay rate.

Surprisingly, little research activity has been dedicated to measuring emis-
sion from truly 2D photonic crystals. Emission of HgTe quantum dots from Si
hexagonal macroporous structure has been investigated by ref. [15]. Less emit-
ted light exited the photonic structure when the reflectivity was high, indicating
that the photonic crystal modified the emission. However, no further study could
be performed since the quantum dots were clustered, making decay properties
unreliable. Si nanopillar photonic crystals have been studied by ref. [16]. Using
Rhodamine-700 laser dye, a stop gap was seen. However, this emission was well
within the absorption range of silicon, complicating interpretation of the results.

In this chapter, measurements of emission of PbS quantum dots from 2D silicon
crystals are discussed. The structures have a centered rectangular lattice in stead
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of a more common hexagonal lattice to accommodate the inverse woodpile design
for the 3D structure via the fabrication process describes in chapter 4. These 2D
photonic crystals are infiltrated with PbS quantum dots. No modification of the
decay rate by the photonic crystal is found but redistribution of the emitted
intensity of the quantum dots plays a significant role.

6.1. Samples

A more detailed discussion of the centered rectangular structures can be found
in chapter 4. In this chapter the results are presented of study of emission from
five samples that have identical lattice parameter a and different pore diameters
d corresponding to different filling fractions of silicon to toluene. Diameters of
271, 290, 310, 340 and 361 nm are used. These diameters are determined by
SEM and have a typical error of 5 %. The pores are 6 µm deep.

In fig. 6.1 a) a band structure is shown of a 2D photonic crystal with a pore
diameter d = 361 nm. The band structure is calculated using ε = 12.1 for the
silicon backbone while the pores have ε = 2.25 (toluene). Since the calculations
are performed for a 2D structure with infinitely long pores, the bands can be
separated into TE (solid lines) and TM (dashed lines) polarised contributions,
where TE fields are polarised perpendicular to the pores and TM fields are po-
larised parallel to the pores [17]. A broad 2D band gap for TE modes is seen
while no such gap exists for TM modes. In the inset the first Brillouin zone of
the lattice is shown. Points of high symmetry are indicated with capital letters.
Experiments are performed by measuring emission from the structure in the ΓK
and ΓM’ directions. Since a high-NA objective with NA = 0.7 is used, a broad
range of angles are taken into account in the experiment. Inside the structure,
this amounts to an angle of approximately 15 ◦ when using neff = 3.

A calculation of the 3D DOS for this particular structure is shown in fig. 6.1
b). The grey bar indicates the TE 2D band gap. The dashed line indicates a
quadratic dependence of the DOS that is applicable for homogeneous media. The
calculated DOS hardly deviates from this quadratic line, even in the range where
there is a broad 2D TE band gap. Therefore, no appreciable modification of the
spontaneous emission decay rate is expected in these 2D photonic crystals.

6.2. Results

Emission measurements on PbS quantum dots inside 2D silicon photonic crystals
are presented in this section. In fig. 6.2 two emission spectra are shown when
measuring on a photonic crystal with d = 310 nm in the ΓM’ direction . The
higher intensity spectrum is measured when the focus of the detection objective
is on the photonic crystal (IPhC). Clear peaks in the spectrum can be seen. The
lower intensity spectrum is measured when the detection focus is on the silicon
wafer (ISi). See paragraph 4.5 for alignment details. For these spectra, we define
a relative intensity as:
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Figure 6.1.: a) Calculated photonic band structure for a 2D centered rectangular
crystal with infinitely long pores. Pore diameter d = 361 nm, silicon
dielectric constant ε = 12.1 and toluene dielectric constant ε = 2.25.
Black solid lines represent TE polarised modes, grey dashed lines
indicate TM polarised modes. Inset shows the first Brillouin zone.
Captical letters indicate the points of high symmetry. b) 3D density
of states (DOS) for the same crystal as in a) in units of ω2/π2c3 per
volume. The dashed line is a quadratic fit with neff = 2.6. The grey
bar indicates the frequency range of the TE 2D band gap.

Figure 6.2.: Emission spectra of PbS quantum dots when the detection objective
is focused on the photonic crystal (black dash-dotted line) and on
the silicon wafer (grey solid line)
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Irel =
IPhC − ISi

ISi
(6.1)

In fig. 6.3 a) the relative spectra are shown for two different pore diameters.
The sample with a diameter of 361 nm is measured along the ΓK direction. For
the d = 361 nm sample the relative spectrum is constant, meaning that the shape
of the quantum dot emission spectrum is not changed by the photonic crystal.
Results for diameters of 271, 290 and 340 nm, not shown here, also reveal no
change in the shape of the emission spectrum. However, for the sample with a
diameter d = 310 nm, the emission spectrum is strongly modified. This sample
is probed in both the ΓK and ΓM’ direction. A clear difference in the emitted
spectrum can be seen. For light emitted in the ΓK direction, a lower intensity is
found for higher frequencies, compared to the same spectrum without photonic
crystal. For light emitted in the ΓM’ direction, more light is coming out at higher
frequencies and very intriguing sharp peaks are observed.

In fig. 6.3 b) the measured decay rates are shown for the 2D crystals. For
details on the fitting procedure see 4.6. The decay rate is measured for three
different emission energies: 0.828 eV (1500 nm), 0.850 eV (1460 nm) and 0.893
eV (1390 nm) with an accuracy of 0.003 eV. Different points of the same symbol
at the same frequency are measurements performed on other locations on the
sample. The variation of these points gives an indication of the reproducibility of
the measurement. Within this error margin, for all three samples a constant and
equal decay rate is found with frequency, in agreement with the DOS calculation.
This behavior differs significantly from 2D photonic crystal slabs, likely since our
experiment averages over all dipole orientations, while in slab experiments only
the dipole orientation with the same polarisation as the 2D band gap is present
because of the choice of quantum dots [10–13].

Since the decay rate is constant, we conclude that the DOS does not contribute
to the modified emission spectrum of the quantum dots inside the d = 310 nm
sample, contrary to what was found for 3D photonic crystals (see chapter 5).
The change in the spectrum is most likely caused by redistribution of light upon
exiting the photonic crystal.

To investigate further the d = 310 nm sample, we have measured the emission
for both the ΓK and ΓM’ direction with a polariser to separate TE and TM polar-
isation. The relative spectrum is plotted in the bottom panel of fig. 6.4. For the
data in this figure the relative spectrum is determined by the emission spectrum
measured from the structure divided by a spectrum measured in suspension. The
intensity is normalised at the low frequency side. For light in the ΓK direction, at
higher frequency relatively less light is exiting the photonic crystal. For the ΓM’
direction, more light exits the structure at higher frequency. It thus seems that
light is redistributed from the ΓK direction to the ΓM’ direction by the photonic
crystal.

It is clearly seen in the figure that the peaks with centers at 0.854 and 0.868
eV only appear in the TE polarised light. In the top panel of fig. 6.4 the band
structure is plotted. The peaks in the TE spectrum seem to overlap with the
edge of the stopgap for TE modes in the ΓM’ direction and a band crossing in
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a) b)

Figure 6.3.: a) The relative spectrum is shown. Lines are guides to the eye. b
The decay rate is shown for the corresponding measurements in a).

the M’K’ direction as indicated by the vertical dashed lines. Since we measure
with a relatively large NA of 0.7 we are sensitive to more directions than only the
ΓM’ direction, making it possible that the bands in the M’K’ direction influence
our measurement. Since the peaks in the TE emission spectrum are related to
band edges, they may be caused by Van Hove singularities in the two dimensional
density of states for TE polarisation. Van Hove singularities are sharp maxima in
the density of states, where the slope of the band diverges [18]. No such maxima
are observed in the three dimensional DOS (see fig. 6.1).

6.3. Discussion

Peaks in the emission spectrum of emitters at the edge of a band gap have been
reported before [19, 20] and are connected to amplified spontaneous emission.
When measuring the intensity of the peaks as a function of excitation power, clear
threshold behavior was found. No such threshold is present for our measurements,
excluding amplified spontaneous emission.

The sample with d = 310 nm, for which redistribution of light is found, has
a different surface than the other samples. The other samples were polished to
accommodate the further process of fabricating a 3D structure. The sample with
d = 310 nm was cleaved. Cleaving the sample gives a better surface quality
than when polishing, judging from the SEM images. However, when measuring
reflectivity of the samples no significant difference is found in the maximum of
the reflectivity peaks between the cleaved and polished samples, while reflectivity
is extremely sensitive to the surface of the probed sample. From the reflectivity
measurements we conclude that the redistribution found for the cleaved samples
is not caused by a better surface quality.
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Figure 6.4.: In the top panel the 2D band structure is shown for a sample with d =
310 nm. The solid black lines indicate TE polarised light, the grey
dashed lines indicate the TM polarised light. In the bottom panel
the relative spectrum is shown of quantum dots inside the d = 361
nm photonic crystal for two different directions and polarisations.
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6.4. Conclusions
We have investigated emission of PbS quantum dots in a 2D silicon photonic
crystal with centered rectangular symmetry. These crystals do not modify the
spontaneous emission rate, in agreement with DOS calculations. However, a
clear redistribution of emitted light is found, including intriguing peaks in the
emission spectrum. These peaks are attributed to the edge of stopgaps in the
band structure.
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Chapter 7

Decay of CdSe quantum dots
in GaP nanowire ensembles

Changing the close surroundings of an emitter can have a strong effect on the
spontaneous emission rate of an emitter. This effect is described by Fermi’s
Golden Rule, which states that the decay rate is determined by properties given
by the emitter itself and by its environment, the local density of optical states
(LDOS) that is available to couple emission to [1, 2]. This effect of the local
density of states on the emission decay rate has given rise to an enormous field
of research, most notably photonic crystals [3, 4]. Here interference of light with
a periodic nanostructure causes strong modification of the LDOS.

In strongly scattering random materials these interference effects can lead to
Anderson localization of light [5, 6]. It has been predicted that the LDOS in such
random photonic materials will show spatial fluctuations due to the interference
inside strongly scattering materials [7–9]. Experimentally, the effect of random
strongly scattering media on spontaneous emission has only gotten attention very
recently [10, 11]. In these studies light from a single emitter source is measured
on the surface [10] and inside [11] a strongly scattering medium. The width of
the distribution of decay rates was observed to increase with scattering strength,
that is defined as 1

kl with k the wave vector of light and l the mean free path.
In this chapter measurements are presented of spontaneous emission decay

rates of ensembles of CdSe quantum dots in between strongly scattering gal-
lium phosphide nanowires. The decay is strongly modified by the radius of the
nanowires. It is shown that the average modification in the decay rate can be
explained by only taking into account the effect of a single scatterer. No effect
of multiple scattering is found on the width of the decay rate distribution.

7.1. Experimental details

7.1.1. Sample

Gallium phosphide (GaP) nanowires were grown at Philips Research using a va-
por liquid solid bottom up approach by chemical vapor deposition, molecular
beam epitaxy, laser ablation and chemical beam epitaxy [12]. These wires are
typically 1.5 µm long and have a radius ranging from 5 to 50 nm with a variation
of typically ± 15 % per sample as determined by scanning electron microscope
(SEM). An SEM picture of a typical sample is shown in fig. 7.1. The nanowires
are grown randomly on a (111) interface of GaP, mostly directed vertically. En-
sembles of nanowires with different radii optically behave similar to effective
media with different GaP filling fractions. These ensembles of nanowires are
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Figure 7.1.: A scanning electron micrograph of the side view of an ensemble of
nanowires. The nanowires are oriented perpendicular to the surface
of the GaP substrate.

strongly birefringent; the refractive index parallel to the wires is different from
the refractive index perpendicular to the wires. The ordinary and extraordinary
refractive indices are determined from measurements of the reflection of polarised
beams from the GaP nanowire layers [13]. The mean free path of each sample
has been determined by measuring the enhanced backscattering cone [14]. For
two samples with the smallest radius, the samples where transparent. The mean
free path was extrapolated for these samples, since no backscattering cone was
present in measurements.

To dope the samples, six different ensembles of nanowires with different radii
were dropcast with a suspension of commercially available CdSe quantum dots
(Evident Evidot). Experiments were performed with two different batches of
quantum dots with a center emission energies near 2.08 eV and 1.98 eV, which
will be called CdSe1 and CdSe2 respectively. An overview of the samples is shown
in table 7.1.

Table 7.1.: Nanowire properties

radius (nm) mean free path l (µm)

15 1.7
46 1
61 0.55
76 0.29
90 0.18
108 0.16
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Figure 7.2.: A schematic picture of the experimental setup. Light from the laser
excites the quantum dots in between the GaP nanowires inside a ni-
trogen purged chamber. The emitted light is detected by the photo-
multiplier tube after passing through a monochromator. The arrows
below the sample indicate the axes of the extraordinary and ordinary
refractive index for the highly birefringent nanowires.

7.1.2. Optical detection

The optical set-up used in the measurements is schematically shown in fig. 7.2.
A pulsed laser (Picoquant ps diode laser) with an emission wavelength of 447
nm, a repetition rate of 20 MHz and a pulse duration of 75 ps is used to excite
the quantum dots. The beam is guided into an optical fiber and focused onto the
sample by an objective with a numerical aperture of 0.05, leading to a focus with
a radius of 5 µm on the sample. The sample is contained in a nitrogen-purged
chamber to prevent photo oxidation of the quantum dots.

The light emitted by the quantum dots is collected, collimated and focused
onto the slit of the prism monochromator (Carl Leiss). The slit width is 400 µm
which allows the detector to collect emitted light from a much larger area than
the excitation spot. Behind the monochromator a Hamamatsu Photomultiplier
tube (PMT) is positioned that is used as a photon counter. With this setup
it is possible to measure spectra by scanning the spectrometer and to measure
decay curves of emitters at particular emission frequencies by time correlated
single photon counting (TCSPC). This technique measures the time between the
arrival of an emitted photon (start) and the next laser pulse (stop) very precisely
[15]. By repeating this measurement a histogram of the decay is made from which
a decay rate can be determined.

Samples with different nanowire radii show the same luminescence spectra.
These spectra are shown in fig. 7.3. For CdSe1 quantum dots three curves are
shown, in toluene suspension, and when infiltrated into two nanowire samples
with different radii. For the CdSe2 quantum dots two spectra are shown in two
different nanowire samples as well. No spectral shift is observed when placing the
quantum dots in between the nanowires, indicating that no chemical changes are
made to the quantum dots. Time resolved measurements are performed at the
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Figure 7.3.: The photoluminescence spectra for three samples and the quantum
dots in toluene.

peak of the two emission curves, at 2.08 and 1.98 eV respectively with a spectral
width of 0.01 eV.

To verify that the quantum dots are in the bulk of the nanowire samples and
not only on the top surface of the nanowires we have studied how the emitted
light escapes from the sample [16]. If the quantum dots are in the bulk of the
strongly scattering nanowires it is expected that less light exits the sample at
higher angles with respect to the normal to the interface. This type of profile is
called Lambertian, where the emitted intensity decreases with the cosine of the
angle between the detector and the normal to the surface [17]. If the quantum
dots would only be deposited on the top of the nanowires the emitted intensity
is expected to be constant with angle. The Lambertian behavior can clearly be
seen in fig. 7.4, validating that the quantum dots are indeed in between the
nanowires and not on the top surface.

We have also verified that the decay curve is not dependent on excitation
power and that the emitted intensity increases linearly with excitation power.
This allows us to exclude energy transfer or gain processes that might affect the
observed decay rate.

7.2. Results
The decay curves have been measured on ensembles of CdSe quantum dots in
between an ensemble of GaP nanowires with different average radii. Results are
shown in fig. 7.5. The experimental curves are clearly different for different
samples. The decay of the quantum dots is strongly modified by placing the
quantum dots in between nanowires with different radii. The decay is not single
exponential. This deviation from single exponential behavior is caused by the
ensemble averaging inherent to the measurement. Because the decay rate is
dependent on position and dipole orientation, individual emitters will have a
different decay rate [18]. Summing these single exponentials in an ensemble
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Results 7.2

Figure 7.4.: The escape function is shown of the emission of CdSe1 quantum dots
from a sample containing nanowires (circles). The dashed line shows
a cosine function.

Figure 7.5.: Decay curves of emission of CdSe1 quantum dots in three samples of
GaP nanowires with different average radius r of the nanowires.
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measurements leads to a non-exponential decay.
To model the decay curve the data are fitted with a distribution of decay rates

as explained in ref. [19]. A function of the following form is used to model the
decay curve:

f(t) =

∫ ∞
0

σ(γtot) exp(−γtott)dγtot (7.1)

where the normalised distribution in decay rates is chosen to be lognormal

σ(γ) = A exp
[
−
( ln(γ)− ln(γmf )

w

)2]
(7.2)

The normalisation factor A equals A = [γmfw
√
π exp(w2/4)]−1. The two

relevant adjustable parameters that can be extracted from the model are the
most frequent decay rate γmf which is the peak of the lognormal distribution
and ∆γ = 2γmf sinh(w) which is the 1

e width of the lognormal distribution.
A typical fit for two different radii of nanowires is shown in fig. 7.6. The

residuals for most curves are equally distributed around 0 as shown for the r = 23
nm sample. In general a goodness of fit χ2

red around 1.6 is found, indicating a
reasonably good fit. An exception is the sample with average radius r = 38 nm
where the lognormal distribution of decay rates does not fit as good, confirmed
by a χ2

red near 4. Here, the least squares fitting routine preferentially fits the
high intensity part of the curve while the long time tail is not well fit by this
curve. We will discuss below a possible reason why this behaves anomalously.

7.3. Discussion

7.3.1. Effect of changing the radius of the nanowires
In fig. 7.7 the most frequent decay rate from our experiment is plotted versus
the sample radius for the two different sizes of quantum dots CdSe1 and CdSe2.
A clear increase in most frequent decay rate is observed with increasing nanowire
radius. It is striking that both the quantum dot types CdSe1 and CdSe2 show
not only the same trend but also the same absolute values of the most frequent
decay rate. The latter observation is a coincidence since these quantum dots have
a different size and should not necessarily have the same decay rate [20].

In the simplest interpretation our measurements correspond to a situation
where a CdSe quantum dot is attached to one single GaP nanowire. The quantum
dot will always be connected to a nanowire or the substrate in the experiment
since the solvent is evaporated. Even if there is only one nanowire, a different
LDOS is expected depending on the dipole orientation and the radius of the
nanowire [21]. Therefore we have calculated the LDOS of an emitter connected
to an infinitely long nanowire. We have modeled the GaP with ε = 11.26. The
LDOS is normalised to one in vacuum. We have used the same cylindrical con-
ventions for directions as Klimov and Ducloy [21] as shown in fig. 7.8. Depending
on the dipole orientation, strongly different decay rates are found, as shown in
fig. 7.7. For emitters with a dipole moment pointing radially outward from the
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Figure 7.6.: The decay curve is shown for quantum dots in samples with two
different average radii of the nanowires. The dashed lines indicate
the lognormal models with γmf = 0.198 and ∆γ = 0.666 for r = 29
nm and γmf = 0.476 and ∆γ = 2.01 for r = 38. In the bottom panel
the residuals are shown. The residuals are offset by -50 and +50 for
clarity.
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Figure 7.7.: On the left axis the most frequent decay rate for CdSe1 and CdSe2
quantum dots is plotted versus the average radius of the nanowires
normalised to the wavelength. On the right axis the calculated LDOS
is shown for an emitter with different dipole orientations versus the
normalised radius of the nanowire. The black solid line shows the
isotropic LDOS, the LDOS averaged over all dipole orientations.
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Figure 7.8.: Conventions used for the calculation of the LDOS on the surface of
a nanowire.

nanowire a strongly increased LDOS is found, peaking at an LDOS of 8 times that
in vacuum. Emitters with a dipole parallel to the nanowire have an LDOS that
varies between 1 and 2 times the vacuum value. The lowest decay rate is found
for emitters with a dipole moment oriented in the φ direction. Here the LDOS
can be as low as 0.03 times the LDOS in vacuum. Since we perform experiments
on ensembles of quantum dots that each have a random dipole orientation, it is
reasonable to assume that the most frequent decay rate shows the same trend as
the isotropic LDOS, which is the average of the three orientations. See appendix
C for more details. Since the light exiting the sample is diffuse in nature, there
is no longer a relation between the emission direction and the detection angle,
making sure that the emission pattern does not affect the ensemble. Indeed the
isotropic LDOS follows our data points very well.

7.3.2. Width of the distribution

It has been predicted that when the degree of multiple scattering increases and
the mean free path becomes smaller, the spatial variations in the local density
of states will increase [22]. These variations have recently been linked to C0

correlations [8]. With our ensemble of emitters in between the GaP nanowires
we probe the spatial distribution of the local density of states directly, where
we probe a certain subset of the local density of states since the quantum dots
have to be attached to either a nanowire or the substrate. It is expected that
the distribution in radiative decay rates increases with the inverse of the mean
free path for an infinite medium with Gaussian white noise [22]. This Gaussian
white noise is an assumption where the scatterers are modeled by point scatterers.
Since the nanowires are larger than the wavelength, this approximation is not
valid for nanowires.

Mirlin [22] has predicted that the probability distribution P (ρ) of the LDOS
in a 3D multiple scattering sample has the following shape:

P (ρ) ∼ exp(−constant l | ln3ρ |) (7.3)

where l is the mean free path of the sample and ρ is the normalized LDOS.
Therefore, the stronger the sample scatters light, the smaller the mean free path
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is, hence the narrower is this distribution. The shape of this distribution is very
similar to the lognormal distribution that has been used to fit the decay curves.
In fact the distribution 7.3 fits the decay curves just as well as the lognormal
distribution. We have still used the lognormal distribution because the first and
second moments of the lognormal distribution are known analytically while this is
not the case for the distribution suggested by Mirlin. The distribution calculated
by Mirlin is again for white Gaussian noise typical of point scatterers. Since the
distribution in local density of states is known to strongly depend on the size and
shape of the scatterers [23] the distribution found in our experiment on nanowires
may have a different shape.

In the paper by Van Tiggelen en Skipetrov [8] it is stated that for Gaussian
white noise the following linear relation should hold between the variance of the
LDOS distribution and the photonic strength given by the inverse mean free
path:

V ar[ρ(r)]

〈ρ(r)〉2
≈ π

kl
(7.4)

In fig. 7.9 we have plotted the normalised variance of the decay rate distri-

bution var(σ)
<γ>2 versus π

kl . This normalised variance is equal to (exp(w
2

2 ) − 1) for
the lognormal distribution of decay rates. It is seen that the normalised variance
remains constant, independent of scattering strength. Therefore, no effect of the
mean free path is apparent on the normalised variance of the decay rate distri-
bution, in contrast to the linear relation as expected for point scatterers[8]. It
was shown in reference [11] that for spherical scatterers the normalised variance
is linear with 1

kl but with a slope that is 20 times smaller than π. The difference
between the experiment of reference [11] and our experiment is that Birowosuto
et al. obtained an unweighted distribution of emission rates for single nanosphere
emitters. In contrast, our modeling of decay curves with a (lognormal) distri-
bution is weighted with the decay rate, as explained by reference [19] and seen
in equation 7.2. Indeed, Birowosuto et al. also observed non exponential decay,
whose lognormal width was much broader than the multiple scattering width,
consistent with our results.

An alternative hypothesis for the width of the decay rate distribution is that
the ensemble of quantum dots is distributed randomly in orientation and position
on the surface of each wire. Therefore we have calculated the distribution of decay
rates for quantum dots attached to one infinitely long nanowire. More details
can be found in appendix C. The 2D dipole plane of CdSe quantum dots [24, 25]
is taken into account to calculate this distribution. The normalised variance as
a function of radius r is plotted in fig. 7.9. The normalised variance expected
from the variation in LDOS is of order 0.075. This variance is much smaller
than would naively be expected from the variation of γ with orientation (see fig.
7.7). The reason is that the quantum dot 2D dipole moment strongly limits the
extreme values of the distribution (see appendix C). At any rate this variance is
much smaller than the value of 1.25 found in experiment.

The calculations in appendix C also shed light on why in particular the sam-
ple with r = 38 nm is not modeled very well by the lognormal distribution of
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Figure 7.9.: The normalised variance versus π
kl . The dashed line indicates the

expected relation (equation 7.4). The solid line shows the normalised
variance expected for emitters on a single nanowire as a function of
nanowire radius. Note that the radius axis is not linear.

decay rates. The calculated distribution is strongly asymmetrical, making the
lognormal less likely to be a good model.

The fact that the samples are birefringent only contributes marginally to the
distribution of decay rates that is measured, to a maximum of about 10 % for
the samples studied. More details can be found in appendix D. Therefore, the
birefringence can not explain the increase in normalised varience.

Moreover, a small variation in radiative decay rates can be expected because
of a distribution in radii of the nanowires in each sample. Since the standard
deviation of the radius per sample is approximately 15 % and there are no strong
resonances in the LDOS near a nanowire, this variation in radius can not cause
a large increase in the normalised variance.

Next to the distribution in radiative decay rates there might also be a varia-
tion of nonradiative decay rates present in our experiment, which broadens the
resulting distribution. It is expected that this variation in nonradiative rate is
not dependent on radius or mean free path, in accordance with our data. How-
ever, a low quantum efficiency of the dots would be very surprising, also in view
of earlier experiments of such dots in inverse opal photonic crystals, where the
efficiency remained elevated [18].

7.4. Conclusions
We have measured the time resolved emission of CdSe quantum dots from inside
ensembles of strongly scattering gallium phosphide nanowires. The decay rate
is modified substantially by the nanowire surroundings. The observed change in
most frequent decay rate is attributed to the effect of a single nanowire scatterer
on the emission of the quantum dots. The normalised variance of the distribu-
tion does not change with scattering strength, at variance with the prediction
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of multiple light scattering theory. We have examined hypotheses concerning
the distribution caused by different dipole orientations near a single nanowire,
birefringence and size distribution, but we have not yet found a hypothesis that
explains the width of the distribution.
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[10] P. V. Ruijgrok, R. Wüest, A. A. Rebane, A. Renn, and V. Sandoghdar, Spon-
taneous emission of a nanoscopic emitter in a strongly scattering disordered
medium, Opt. Expr. 18, 6360 (2010).

[11] M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, Observation
of spatial fluctuations of the local density of states in random media, Phys.
Rev. Lett. 105, 013904 (2010).

[12] O. L. Muskens, S. L. Diedenhofen, M. H. M. Van Weert, M. T. Borgström,
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Chapter 8

Summary and outlook

In this thesis experimental results are presented that show that we can control
the process of spontaneous emission by placing the emitter close to a nanostruc-
ture. We have investigated spontaneous emission near interfaces, in 2D and 3D
photonic crystals and near random arrays of nanowires.

We have shown that the analytically known local density of states close to
a silver mirror can be used as a tool to determine the emission properties of
emitters. Using the position dependence of the LDOS, we found that the quantum
efficiency of the technologically important CdSe quantum dot is close to 80 %.
The non-radiative rate is strongly size dependent. Larger quantum dots typically
have a lower non-radiative contribution to their decay. The transition dipole
moment is hardly size dependent and was found on the order of 0.7, much lower
than expected from calculations.

The dipole orientation dependence of the local density of states plays a signifi-
cant role close to the experimentally very easily accessible interface between glass
and air. More than a factor of two difference is found in LDOS for dipoles oriented
parallel and perpendicular 10 nanometer from the interface. When investigating
ensembles of emitters that have a random dipole orientation, a multi-exponential
decay curve is measured. When the interface close to the emitters is removed a
single exponential decay is found. By only taking into account the difference in
LDOS between parallel and perpendicularly oriented dipoles the decay curve can
be modeled very precisely without any adjustable parameters.

The ultimate control over spontaneous emission can be achieved in a photonic
crystal where the photonic band gap overlaps in frequency with the emission spec-
trum of the emitter. Theoretically the LDOS is zero inside an infinite photonic
crystal, leaving the emitter forever in its excited state. We have systematically
studied the decay of PbS quantum dots at different emission energies in four
crystals with different filling fraction. We have showed that in a real and finite
Si 3D inverse woodpile photonic crystal the decay is strongly inhibited up to 11
times inside the frequency range of the photonic band gap. This figure is even
more impressive when considering that the quantum dots have a distribution of
positions and orientations and the experiments were performed at room temper-
ature. Therefore future experiments on single sources and at low temperatures
will undoubtedly yield much greater inhibitions.

Although inhibition up to 11 times is very exciting, it is not proof of the exis-
tence of a band gap, a region with truly zero density of states. Since experiments
will always be performed on finite photonic crystals, the density of states will
not be zero. However, in a photonic band gap frequency region the LDOS should
scale exponentially with the crystal size. Future experiments will examine the
role of crystal size on the decay rate of emitters inside such a crystal. Inhibition
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of spontaneous emission does not only change the decay curve of the emitter,
but can also influence the excitation rate as discussed in appendix B. Signs of
a photonic band gap might also be experimentally accessible by measuring sat-
uration of the emitted intensity as a function of excitation power. This type of
measurement has not been explored to the best of our knowledge. Our analysis
was performed for two level systems that do not show lasing. If a different type
of emitter is used that does show lasing, the lack of spontaneous emission inside
the band gap of a photonic crystal leads to the long-heralded thresholdless laser.

Two dimensional photonic crystals are more easily fabricated than their 3D
counterpart but can still interact strongly with light. By placing PbS quan-
tum dots inside 2D centered rectangular macroporous silicon photonic crystals
we show that the light is strongly redirected inside the photonic crystal. No
modification of the decay rate is seen, as expected from density of states calcula-
tions. The observed peaks in the emitted intensity are attributed to the edge of
stopgaps in the band structure, indicating that these effects might be caused by
interaction with 2D Van Hove singularities. At Van Hove singularities fractional
decay is expected to be observed. To convincingly show this fractional decay
experiments have to be performed with single emitters. This is not feasible with
the current experimental scheme due to the low signal to noise ratio in the near
infrared wavelength range. Both improving the detector to have a lower noise
count rate and changing the emitter to a type that has a higher decay rate might
make these experiments attainable in the future.

Finally CdSe quantum dots are placed inside strongly scattering ensembles
of gallium phosphide nanowires to investigate the effect of disorder on the decay
dynamics. We find that increasing the radius of the nanowires increases the most
frequent decay rate found in the experiment. This increase can be explained by
modeling the local density of states modification by a single nanowire on the
emitter. No effect of the mean free path on the relative width of the distribution
of decay rates is seen. The influence of the mean free path is most likely averaged
out because of the ensemble average in our measurements. Future experiments
should focus on measuring single emitters inside strongly scattering structures.
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Appendix A

Inhomogeneous versus
homogeneous linewidth of
PbS quantum dots by
fluorescence line narrowing

The measured spectral linewidth in the emission of quantum dots has two con-
tributions: A homogeneous and an inhomogeneous part [1]. The homogeneous
linewidth is the typical linewidth of a single emitter while inhomogeneous broad-
ening is for instance caused by the fact that the measurement is performed over
an ensemble of quantum dots with slightly different size. Since the size of the
quantum dot determines the emission energy a distribution in sizes leads to an
inhomogeneously broadened spectrum.

Knowledge of the homogeneous linewidth is important for interpretation of
decay curve measurements. The decay rate of an emitter depends on the local
density of states. In an experiment, the local density of states is averaged over
the homogeneous linewidth of the emitter. Features in the local density of states
on a scale comparable to the homogeneous linewidth are therefore difficult to
detect.

For widely used quantum dots like CdSe it is well known that most of the
spectral linewidth is caused by inhomogeneous broadening of the ensemble since
the homogeneous linewidth of a single quantum dot is much narrower [2]. For
PbS quantum dots single quantum dot emission has been measured [3], however,
this measurement was performed for relatively small quantum dots that emit
near 800 nm where a Si detector can be used. For the near infrared emitting
quantum dots we use in the telecom range around 1500 nm, the noise levels of
detectors are an order of magnitude larger than for the visible range making the
investigation of single emitters extremely hard. Thus the contributions of the
homogeneous and imhomogeneous broadening are presently not known.

In this appendix fluorescence line narrowing of the PbS emission of ensembles
of quantum dots around 0.84 eV (1475 nm) is presented. By scanning the energy
of the excitation light through the emission spectrum, the linewidth decreases by
a factor of two, showing that the homogeneous linewidth is maximum 44 meV.

A.1. Experimental
A sketch of the experimental set-up is shown in fig. A.1. A supercontinuum
white light source (Fianium) is used to excite the quantum dots. The white light
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Figure A.1.: Schematic of the experimental setup to measure near infrared
emission.

is sent through a grating monochromator to select a certain bandwidth of light.
The spectral width is approximately 0.015 eV (5 nm) FWHM. By rotating the
grating, a different center energy between 0.6 to 3.1 eV (400 to 2100 nm) can be
chosen as excitation light. The excitation light is focused inside the suspension
of quantum dots using an objective with NA=0.05 (o2). The detection objective
(o1) with NA=0.7 is placed under an angle of 90 ◦ with respect to the excitation
objective to prevent direct reflection of excitation light into the detector. Since
the excitation light has the same wavelength as the emission light, it is not
possible to block the excitation light with a filter. The amount of scattered
excitation light even under the 90 ◦ angle is substantial. The emission light is
passed through a grating monochromator and imaged onto an liquid nitrogen
cooled InGaAs diode array. For the measurement a suspension of quantum dots
is used with a concentration of 4·10−6 M PbS-1500 quantum dots (Evident) in
toluene.

A.2. Results

The measured emission spectra are shown in fig. A.2. The excitation band seems
much broader than 0.015 eV because the detector is strongly saturated at the
excitation energy, giving overflow to the surrounding pixels. An energy band of
0.033 eV has been blocked in the emission spectra. It is clearly seen that the
emission spectrum narrows when the quantum dots are excited at lower energy.
The emission spectrum excited at 1.167 eV is a reference spectrum where the
excitation energy does not overlap with the emission spectrum. There the center
energy is 0.845 eV with a full width at half maximum (FWHM) linewidth of
0.086 eV.

To analyse the data the emission spectra were modeled with a Gaussian. This
is shown in fig. A.2 with the black curves. The result of this fit is shown in
fig. A.3. Here both the center emission energy and the FWHM are shown as
a function of excitation energy. With decreasing excitation energy, the emission
peak shifts linearly to lower energy from 0.872 to 0.811 eV. A decreasing emission
energy is expected for inhomogeneously broadened emitters, since the quantum
dots emitting at the blue edge of the emission peak are no longer excited. The
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Figure A.2.: The emission spectra of PbS quantum dots are shown when excited
at different energies. The solid black lines show a Gaussian model
of the data.

Figure A.3.: The result of the Gaussian fits are shown. In the left ordinate the
center energy is plotted, on the right axis the FWHM is shown.
The dashed line indicates the width of the excitation band in the
measurement.

FWHM decreases linearly from 0.086 eV to 0.044 eV with decreasing excitation
energy. Since the broadened excitation line from the white light source influences
the measured spectrum over an energy range larger than 0.033 eV the actual
linewidth could be smaller. Thus our measurements give an upper bound. A
unexpected result in fig. A.3 is that the peak of emission is higher when the
excitation energy is at the blue edge of the emission than when looking at the
reference spectrum excited with an energy far away from the emission spectrum.
We do not currently have an explanation for this shift.

A.3. Conclusion
We have performed a fluorescence line narrowing experiment on PbS quantum
dots in suspension. We measure that the linewidth decreases from 0.086 to 0.044
eV when scanning the excitation wavelength over the emission spectrum. From
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this we conclude that the homogeneous linewidth of PbS quantum dots emitting
around 0.84 eV is at most 0.044 eV, indicating that about half of the linewidth
is caused by homogeneous broadening.
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Appendix B

Can (L)DOS change the
emitted intensity?

The decay rate that is measured in experiments is the total decay rate γtot which
consists of a radiative and a non-radiative part:

γtot = γrad + γnrad (B.1)

In the radiative process energy is lost through emission of a photon. Energy can
also be lost non-radiatively, for example by generating phonons. The quantum
efficiency (QE) η of an emitter, given by

η =
γrad
γtot

(B.2)

gives the fraction of excitation energy that is transferred to spontaneous emis-
sion. Depending on the value of the QE the (local) density of states will have a
different effect on the emission [1–3].

If the QE is 100 % all the absorbed energy is converted in light and γtot = γrad.
Since the local density of states only affects the radiative decay rate, modification
of the measured total decay rate will be proportional to the LDOS change.

If the QE is very low, say 1 %, γtot ≈ γnrad. In this situation modifying the
density of states hardly affects the measured total decay rate.

In literature a change in the emitted spectrum of emitters in a photonic crystal
is often attributed to a modified local density of states [4–7], even for very low
contrast photonic structures. However, there are different processes that influence
the emitted intensity beside the (L)DOS. Changes in the emission spectrum do
not necessarily have to be caused by the (L)DOS of the photonic crystal. In
this appendix it is explained which processes influence the emitted intensity, and
what the role of the quantum efficiency is on the emitted intensity.

B.1. From excitation photon to emitted photon
In fig. B.1 the processes that are involved with converting excitation to emission
photons in a photonic structure are shown. The emission process is modeled as a
quasi two-level process, where the excitation energy is higher than the emission
energy. The relaxation to the emission upper level from the excitation upper
level is assumed to be a very fast process. For quantum dots this model is
applicable, since this decay is much faster than the spontaneous decay rate.
Generally the non-radiative decay from excitation to emission upper level has
picosecond timescales while the emission process is typically on 500 ns timescales.
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Figure B.1.: Schematic diagram of the excitation and emission process.

Starting from the excitation photon on the left, there are 4 aspects that influ-
ence the number of emitted photons. First the excitation photon needs to enter
the photonic crystal (indicated by the square). This process is influenced by the
photonic crystal if the photonic crystal has spectral features near the excitation
energy. Since in our experiments the quantum dots are excited with the same
laser line, this step will not influence the measured emission spectra.

Secondly the excitation photons have to be absorbed by an emitter. The a
chance that the excitation photon is absorbed depends on several experimental
conditions like the absorbtion cross section, the concentration and the level of
saturation of the emitters.

In the third step the excitation energy is lost from the emission upper level
by either emitting a photon (radiative decay) or by another loss process (non-
radiative decay). The radiative process is proportional to the local density of
states and depends of frequency, position, and dipole orientation of the emitter
with respect to the photonic structure.

Finally the emitted photon needs to exit the photonic crystal to be detected.
There will be a far field distribution of the emission, that might be influenced
by two different contributions. The first contribution is the emission pattern of
each individual dipole. The doughnut shaped emission pattern of a dipole in
vacuum is strongly influenced by higher refractive index media in the near field
of the emitter. Even for a simple interface, this emission pattern is strongly
modified (see, e.g., chapter 3). For a photonic crystal environment the dipole
pattern will be more complicated [8]. The other contribution to the distribution
of emission comes from multiple scattering. When the photon does not exit the
structure ballistically but is multiply scattered before it leaves the structure, the
redistribution is known to be affected by the band structure of the photonic
crystal [9].

B.2. What happens to the emitted intensity?
The absorption and emission process (step 2 and 3 in fig. B.1) of spontaneous
emission can be described by using rate equations to describe the population of
the emission excited state level N2

dN2

dt
= P − γtotN2 (B.3)

We consider a quasi two-level system that is pumped at a constant rate P. In
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steady state, the time derivative is zero and N2 = P/γtot. The number of emitted
photons per unit time is equal to I = ηγtotN2 = ηP = Pγrad/γtot.

When η=1 the emitted intensity is not dependent on the radiative rate and
therefore LDOS, because I = P. Since every excitation quantum is converted
to an emitted photon the emitted number of photons is only dependent on the
number of excitation quanta.

When η is very low γtot ≈ γnrad. This results in the situation where the emitted
intensity is directly proportional to the radiative decay rate γrad and therefore
(L)DOS.

B.3. (L)DOS modification
The radiative decay rate is directly proportional to the LDOS, as is described
by Fermi’s Golden Rule. The LDOS is dependent on frequency ω, the position
r of the emitter and the orientation of its dipole moment d̂. As a consequence
the quantum efficiency η will also in general be dependent on ω, r and d̂. By
modifying the LDOS, η is changed. This change is discussed in this section.

The quantum efficiency of a certain emitter for a particular value of the (L)DOS
is often known and will be called ηhom. It is assumed here that this value holds
for (L)DOS is 1 (but the analysis in general still holds if this value is not equal
to unity). Here, the radiative decay rate will be set proportional to DOS(ω) in
stead of LDOS for convenience: γrad(ω) = A DOS(ω). The nonradiative decay
rate is assumed to be independent of frequency and constant.

η(ω) =
A DOS(ω)

A DOS(ω) + γnrad
(B.4)

When γnrad = 0, η is again equal to unity independent of frequency. A can be
determined for ηhom < 1, since for DOS = 1, η = ηhom.

A =
γnradηhom
1− ηhom

(B.5)

η(ω) =

γnradηhom
1−ηhom DOS(ω)

γnradηhom
1−ηhom DOS(ω) + γnrad

=
ηhomDOS(ω)

ηhomDOS(ω)− ηhom + 1
(B.6)

It should be emphasized that for these equations to hold, a constant excitation
rate P is assumed. This only holds for situations where the total decay rate
is larger than the absorption rate per emitter. When this is not the case, the
emitters will saturate, no longer absorbing excitation quanta. When DOS=0 and
η=1 this situation automatically occurs. Hence saturation measurements are a
particularly sensitive probe in the vicinity of a photonic band gap.

The above analysis only holds for emitters where the homogeneous line width
is much narrower than any spectral features in the (L)DOS. This is generally the
case for quantum dots inside photonic crystals.

When η is not unity but still non negligible the situation can now be calculated
when the DOS is known as a function of frequency. The next section will show
a few examples.
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Figure B.2.: The quantum efficiency is plotted as a function of DOS for different
values of ηhom.

B.4. Examples for different values of ηhom

In fig. B.2 the quantum efficiency η is plotted as a function of DOS (equation
B.6). The emitted intensity is proportional to η for a constant pump rate P .
If the DOS is too low, equation B.6 no longer holds since the pump rate is no
longer constant. This region is indicated with the grey bar, using an upper level
of DOS=0.1 which is more or less arbitrarily chosen. In reality the boundary
of DOS may depend on ηhom, since time scales for radiative and non-radiative
decay can be different.

When the homogeneous quantum efficiency ηhom = 0.999, modification of the
DOS hardly changes η. However even for large quantum efficiency the quantum
efficiency and emitted intensity can be strongly modified by the DOS. This is
a surprising result in view of the prior expectations from ref. [2]. For very low
quantum efficiency (for instance η = 0.1) the quantum efficiency is almost linear
with DOS.

Two data points are added in fig. B.2 that are taken from the emission spec-
trum of a 3D photonic crystal (see fig. 5.6 c). We observed values for the average
intensity at the low frequency side where the DOS is 1.3 and in the band gap,
where the DOS value for the lower intensity was estimated to be 0.3, or 1

5 of
the higher level DOS, as shown. These measurements imply that the quantum
efficiency of our quantum dots is between 80 and 90 %, which is nicely high.

In fig. B.3 the measured total decay rate is shown as a function of DOS. The
decay rate measurements that show inhibition in the band gap are left out since
we do not know the DOS for these measurements. Clearly the total decay rate is
linear with DOS. The line is a linear fit to the data, giving a quantum efficiency
of approximately 54 ± 30 %. The error margin is determined from the standard
error of the linear fit.
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Figure B.3.: The total decay rate vs the DOS is shown. The line is a linear fit of
the data, giving γrad = 0.9± 0.5µs−1 and γnrad = 0.8± 0.4µs−1

B.5. Conclusion
For situations where the quantum efficiency is not unity or very small, the emitted
intensity is calculated. Even for ηhom = 0.99 an effect of a low DOS can be seen
on the emitted intensity. We have not taken into account redistribution of light
in our analysis. We derive that the QE of our PbS quantum dots to be about 80
%, much higher than specified by the manufacturer.
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Appendix C

Comparing ab initio
distributions and the
lognormal model

In chapter 3 it is discussed that it is possible to calculate the decay curve and
decay rate distribution of an ensemble of emitters from ab initio in a well defined
environment. Very often in experiments a non-exponential decay curve is found.
This decay curve is then modeled with an analytical distribution of decay rates,
like a lognormal [1] or a gamma [2] distribution. Both functions have the benefit
of excluding unphysical negative decay rates. Another choice is the bi-exponential
model. However, when all four parameters are adjustable in this fit it is difficult
to get reliable results [3]. It remains an open question which values derived
from a model are representative of the measurement, especially in the case of
non-symmetric distributions such as a lognormal or a gamma distribution.

In this appendix an ab initio distribution of decay rates is calculated for an
ensemble of CdSe quantum dots near a nanowire and compared with a lognormal
model that is used in both chapter 2 and 7 of this thesis. It is shown that the
most frequent decay rate γmf of the lognormal distribution is a good indicator
for the mean value of the underlying distribution.

C.1. Decay rate distribution near a nanowire for
CdSe quantum dots

In chapter 7 the decay is discussed of emitters near an infinitely long wire that is
thin with respect to the wavelength of light. The local density of states (LDOS)
near such a wire can be calculated following reference [4]. Since the minimum,
the median and the maximum decay rate are known, it is possible to calculate the
distribution of radiative decay rates [5]. However, since CdSe quantum dots have
a 2D dipole plane or bright plane [6, 7] this has to be taken into account when
calculating the distribution of decay rates. The LDOS will be averaged over
the bright plane of the quantum dot. Taking into account this averaging, the
distribution is now calculated using the same Monte Carlo algorithm discussed
in chapter 3. Since for our batch of CdSe quantum dots the quantum efficiency
is 80 %(see chapter 2 and [8]) it is possible to calculate the expected total decay
rate and expected decay curve.
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C.2. Modeling the calculated decay curves with a
lognormal distribution of decay rates

To model the calculated decay curve the calculation is fitted with a distribution
of decay rates. A function of the following form is used to model the decay curve:

f(t) =

∫ ∞
0

σ(γtot) exp(−γtott)dγtot (C.1)

where the normalised distribution of decay rates is chosen to be lognormal

σ(γ) = A exp
[
−
( ln(γ)− ln(γmf )

w

)2]
(C.2)

The normalisation factor A equals A = [γmfw
√
π exp(w2/4)]−1. The two rel-

evant independent adjustable parameters that can be extracted from the model
are the most frequent decay rate γmf which is the peak of the lognormal distri-

bution and w. The mean of the distribution is given by γµ = γmf exp( 3w2

4 ) and

the normalised variance is given by <γ2>−<γ>2

<γ>2 = exp(w
2

2 )− 1.

C.3. Results

In fig. C.1 the calculated decay curves are shown for an ensemble of quantum dots
with random bright plane orientations near a nanowire for two different radii of
nanowire. The dynamic range was chosed as the experimentally accessible range,
typically about 3 decades of signal (solid line). The calculated curve is modeled
with a lognormal distribution of decay rates (dotted line). For the r = 23 nm
nanowire the agreement is good. For the r = 38 nm nanowire the agreement is
less good, especially for longer times.

a) b)

Figure C.1.: The calculated decay curve (solid black line) and a lognormal fit
(dotted grey line) for a nanowire of radius r = 23 nm and r = 38
nm.
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In fig. C.2 the calculated distribution of decay rates from the ab initio model
is plotted. The distribution found for r = 23 nm is clearly more symmetrical
than the distribution for a nanowire of r = 38 nm. The solid lines indicate the
lognormal distribution that was extracted from the model of the decay curve
in fig. C.1. For r = 23 nm the fitted lognormal distribution matches the ab
initio distribution quite well. However, the contribution of low decay rates is
underestimated, while the high decay rate contribution is overestimated. For
r = 38 nm the ab initio distribution and the lognormal distribution do not agree
well in shape. Again the low decay rate contribution is underestimated by the
lognormal while the high decay rate contribution is overestimated. The arrows
in the plot indicate the mean decay rate < γ > of the ab initio distribution,
and the most frequent decay rate γmf and mean decay rate γµ of the lognormal
distribution. For both the radii the mean of the ab initio distribution agrees
better with the most frequent decay rate than with the mean decay rate of the
lognormal fit.

a) b)

Figure C.2.: The distributions of decay rates are shown with the grey bars for
emission near a nanowire with r = 23 and 38 nm. The fitted lognor-
mal distribution is shown with the black line. The arrows indicate
the mean of the calculated ab initio distribution < γ >, and the
most frequent decay rate γmf and the mean decay rate γµ found in
the fit.

In fig. C.3 the results for the mean and normalised variance are summarised
for different nanowire radii. In fig. C.3 a) the mean decay rate of the ab initio
distribution < γ > is plotted together with the most frequent decay rate γmf and
mean decay rate γµ of the lognormal distribution. The mean decay rate of the ab
initio distribution shows the same trend as the most frequent decay rate of the
lognormal distribution, and the value is only slightly overestimated. Especially
for the more asymmetric distributions found for radii of 38 and 45 nm, the mean
of the lognormal distribution deviates from the mean of the ab initio distribution.
In fig. C.3 b) the normalised variances for theab initio distribution and for the
lognormal distribution are plotted. The trend in the ab initio distribution is
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followed well by the lognormal distribution, although the absolute value is slightly
underestimated.

a) b)

Figure C.3.: a) The mean of the ab initio distribution < γ >, and the most fre-
quent decay rate γmf and the mean decay rate γµ of the fitted log-
normal distribution for different nanowire radii. b) The normalised
variance of the ab initio distribution and the lognormal distribution.

C.4. Conclusion
We have seen in case of quantum dots near nanowires that for different distri-
butions the most frequent decay rate γmf and the normalised variance of a log-
normal model are good indicators for the mean and normalised variance of the
underlying distributions, even though these distributions have a different shape
than lognormal. This validates our choice for the most frequent decay rate γmf
as important parameter to determine the quantum efficiency and dipole moment
in chapter 2.
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Appendix D

Emission of light in
birefringent uniaxial media

This appendix explains how the decay rate of an emitter is affected in a homoge-
neous, birefringent uniaxial material. Therefore we calculate the local density of
states (LDOS) when the refractive index depends on angle. Naively one would
expect the decay rate to be proportional to the refractive index in a certain di-
rection. However, since there is an angle integration in the derivation for LDOS,
the effect of an angle dependent refractive index will be integrated over angle,
reducing the influence of the birefringence on the LDOS. We will find that the
effect of birefringence on the decay rate of an emitter is less than 10 %, even for
very strong birefringence.

The radiative local density of states is given by the following equation [1]:

N(~r, ω, êd) =
1

2πε(~r)

∑
p

∫ ∞
0

d~kδ(ω − ω~k,p)|êd · ~Λk,r(~r)|
2 (D.1)

where

∑
p

∫ ∞
0

d~k = 2

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞
0

dk k2 (D.2)

is a sum over modes ~k and polarisation p, and where êd is the transition dipole
moment orientation, ~Λ is the electromagnetic mode function and ω~k,p are the
eigenfunctions of the mode. Here, θ is the angle between the emitting dipole and
the electromagnetic field.

D.1. Homogeneous medium
In a homogeneous medium without birefringence there is no dependence on place
or angle between electric field and dipole moment, and k = nω/c which simplifies
the integral for the local density of states to

N(ω) =
1

n2(2π)3
4π

∫ ∞
0

dθ sin θ cos θ2n
3

c3

∫ ∞
0

dωkδ(ω − ωk)ω2
k (D.3)

=
n

2c3π2

2

3

∫ ∞
0

dωkδ(ω − ωk)ω2
k (D.4)

=
nω2

3c3π2
(D.5)
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Figure D.1.: Angle definitions

D.2. Birefringent medium
In a birefringent medium the refractive index is angle dependent. For uniaxial
media with two directions with an ordinary refractive index and one direction
with extraordinary refractive index the following relation holds:

n(α) = ne cos2 α+ no sin2 α (D.6)

where ne and no are the extraordinary and ordinary refractive indices. In a
system where the angle α is a sum of θ and φ (see fig. D.1) where θ is again the
angle between the dipole and the E field and φ is the angle between the dipole
and the direction of the extraordinary refractive index, the following expression
for the local density of states is found:

N(ω, φ) =
1

2π2c3

∫ ∞
0

dθ sin θ cos θ2n(θ + φ)

∫ ∞
0

dωkδ(ω − ωk)ω2
k (D.7)

=
1

2π2c3
(no(

1

3
+

1

15
cos(2φ)) + ne(

1

3
− 1

15
cos(2φ)))ω2 (D.8)

D.3. Example
The local density of states depends on angle φ of the dipole axis with respect to
the axis of the extraordinary refractive index. In figure D.2 the expected local
density of states is plotted as a function of angle φ. We have used values for
the ordinary and extraordinary refractive index that are found for ensembles of
gallium phosphide nanowires [2]. These are the same sample on which emission
experiments are performed as discussed in chapter 7. These nanowire ensembles
show strong form birefringence.

The difference in LDOS for different orientations of the dipole with respect
to the extraordinary refractive index axis is less than 10 %. For comparison,
the difference in refractive indices for calcite, a birefringent natural crystal, is
0.17 which is much smaller than the difference in refractive index for the ensem-
bles of nanowires. Therefore, in naturally birefringent crystals, the effect of the
birefringence on spontaneous emission will be even smaller.

This derivation holds specifically for emitters with an axial transition dipole
moment. If in stead an emitter is used that has a bright plane with two possible
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Figure D.2.: Plot of LDOS versus angle φ is shown for three different values of
the ordinary and extraordinary refractive index.

directions of the dipole like for instance CdSe quantum dots [3, 4], the effect will
be even smaller since the decay rate will be averaged over a plane.

In this appendix we assume that the medium in which the emitter is placed
can be described as a homogeneous medium. In chapter 7 it is clearly shown
that ensembles of nanowires do not form a homogeneous medium on the scale of
the emitter. This derivation can therefore not strictly be applied to ensembles of
nanowires.

D.4. Conclusion
The local density of states in uniaxial homogeneous media has been calculated.
For a medium with a birefringence comparable to ensembles of nanowires, the
expected difference in LDOS as a function of dipole orientation is less than 10 %.
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Licht is zo’n belangrijk fenomeen in ons dagelijks leven dat we zelden nadenken
hoe dit ontstaat. Vrijwel al het licht om ons heen wordt gemaakt in atomen
en moleculen. Zo’n atoom of molecuul heeft een bepaalde grondtoestand met
een minimale lage energie. Door bijvoorbeeld dit atoom of molecuul op te war-
men, ontstaat een overschot aan energie en kan het atoom of molecuul naar een
toestand met hogere energie. Bij terugval naar de grondtoestand kan er licht
worden uitgezonden. Het uitzenden van licht gebeurd in pakketjes, die fotonen
worden genoemd. Dit is schematisch weergegeven in het figuur 3 links. De meest
voorkomende manier waarop dit gebeurt heet spontane emissie. Naast spontane
emissie heb je ook gestimuleerde emissie. Hiermee wordt laserlicht gegenereerd.
In ons onderzoek ligt de focus op de spontane emissie, dat nu verder zal worden
toegelicht. Het atoom of molecuul dat het licht uitzendt wordt voor het gemak
verder de lichtbron genoemd.

Spontane emissie

Bij spontane emissie zendt de lichtbron een foton uit in een willekeurige richt-
ing na een willekeurige tijd. Het bijzondere is dat dit proces niet alleen wordt
bepaald door de lichtbron zelf, maar ook wordt bëınvloed door de omgeving van
de lichtbron. Overal om ons heen fluctueert het elektromagnetische veld. Zelfs in
een vacuüm bestaan deze fluctuaties. Gemiddeld in tijd is het elektromagnetische
veld nul, maar er zijn de hele tijd fluctuaties rond nul. De lichtbron wisselwerkt
met dit fluctuerende elektromagnetische veld, zodat een foton uitgezonden wordt.
Dat betekent ook dat je voor een bepaald foton niet van te voren kunt bepalen
hoe lang het zal duren voordat de lichtbron dit foton uit zal zenden. Want dat
hangt af van het fluctuerende elektromagnetische veld waarover je van te voren
niets kunt zeggen. Waar je wel iets over kunt zeggen is de gemiddelde tijd die
het duurt als je het uitzenden van het foton heel vaak herhaalt.

Dit is precies wat wij doen in experimenten. Door miljarden keren te meten hoe
lang het iedere keer duurt voordat het foton wordt uitgezonden is het mogelijk
een histogram te maken van het emissieproces. Een voorbeeld van een histogram
is afgebeeld in figuur 3 rechts. Uit zo’n histogram of vervalcurve is het mogelijk
conclusies te trekken over bijvoorbeeld de karakteristieke of gemiddelde tijd die
het duurt voordat een foton wordt uitgezonden. Dit wordt ook wel de levensduur
van de lichtbron genoemd. Deze levensduur is afhankelijk van de fluctuaties van
het elektromagnetische veld. Het bijzondere is nu dat die fluctuaties kunnen
worden bëınvloed door structuren heel dicht bij de lichtbron te plaatsen. De
maat voor de omgevingsinvloed heet de lokale toestandsdichtheid.
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Figuur 3.: In de figuur links is schematisch te zien dat bij een verschil in en-
ergie een foton kan worden uitgezonden. De rechter figuur toont een
histogram van aankomsttijden van fotonen bij spontane emissie.

De lokale toestandsdichtheid

Er zijn verschillende manieren om de lokale toestandsdichtheid te veranderen.
Een kernbegrip daarbij is interferentie. Licht is een golf van elektromagnetische
straling. Bij een golf hoort een bepaalde golflengte. Golven hebben de eigen-
schap dat ze interferentie kunnen vertonen. Als de pieken van de twee golven
op hetzelfde moment op dezelfde plaats zijn zullen die elkaar versterken omdat
ze optellen. Maar als een piek en een dal samenvallen dan is de opgetelde golf
juist volledig uitgedoofd. Bij het versterken heet de interferentie constructief,
bij uitdoven destructief. Dit effect is bijvoorbeeld verantwoordelijk voor de kleur
van zeepbellen. Een zeepbel bestaat uit een heel dun vliesje water. Het licht van
buiten de zeepbel reflecteert zowel van de voorkant als de achterkant van het vlies.
Voor sommige golflengtes past de afstand tussen de voor- en achterkant precies
op de golflengte. Daardoor ontstaat voor die kleur constructieve interferentie
en zie je die kleur. Terwijl juist voor andere kleuren destructieve interferentie
ontstaat en die kleur niet meer zichtbaar is.

Ook de fluctuaties in het elektromagnetisch veld die zorgen voor de lokale toe-
standsdichtheid zijn gevoelig voor interferentie verschijnselen. Daarom kan een
voorwerp in de omgeving van een lichtbron dat zorgt voor reflectie of verstrooi-
ing van het licht ook interferentie veroorzaken en de lokale toestandsdichtheid
bëınvloeden. En dat is precies het type experimenten dat wij hebben uitgevoerd.
Door een lichtbron op speciale plekken te plaatsen in de buurt van objecten die
zorgen voor reflectie van het licht zijn de fluctuaties in het elektromagnetisch
veld te varieren. Daarmee is ook de levensduur van een lichtbron aan te passen.
Om preciezer te zijn: de toestandsdichtheid wordt bëınvloed door de plaats van
de lichtbron ten opzichte van een object, de golflengte van het uitgezonden licht
en de trillingsrichting van het uitgezonden foton van de lichtbron.
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Figuur 4.: De inkomende golf van links wordt aan twee oppervlakken gere-
flecteerd. Links is de afstand tussen de twee oppervlakken zo dat
de toppen en dalen van de twee gereflecteerde golven overeenkomen
en ontstaat constructieve interferentie. Rechts valt een dal van de ene
golf juist samen met een piek van de andere golf. Hierdoor ontstaat
destructieve interferentie en blijft er geen golf over.

In dit proefschrift

In hoofdstuk 2 van dit proefschrift worden experimenten beschreven waarbij licht-
bronnen vlakbij een vlakke zilverspiegel zijn geplaatst. Om preciezer te zijn,
dichterbij de spiegel dan de golflengte van het licht. Nu is de golflengte van
bijvoorbeeld groen licht 500 nanometer, oftewel 0,0005 millimeter dus het posi-
tioneren van de lichtbronnen moet met uiterste precisie gebeuren. Op bepaalde
afstanden van de spiegel is de toestandsdichtheid verhoogd door constructieve
interferentie, terwijl op andere plaatsen het licht dat wordt uitgezonden door
de lichtbron juist destructief interfereert. Voor een vlakke spiegel is dit relatief
makkelijk te berekenen. Daarom kan je een spiegel gebruiken om belangrijke
gegevens over de lichtbronnen te verkrijgen omdat de toestandsdichtheid bekend
is.

In hoofdstuk 3 wordt een lichtbron heel dicht bij een overgang van lucht naar
glas geplaats. Ook dit is een spiegel voor het uitgezonden licht. Nu wordt niet
de afstand van de lichtbron tot de spiegel gevarieerd, maar wordt gekeken naar
het effect van de trillingsrichting van het licht. In onze experimenten meten
we aan heel veel lichtbronnen tegelijk. Iedere lichtbron heeft een iets andere
trillingsrichting. Daardoor ziet iedere bron een iets andere toestandsdichtheid en
krijgt daarom ook een iets andere levensduur. Als je al die histogrammen tijdens
een meting optelt krijg je een specifieke vervalcurve. Wij laten voor het eerst
zien dat je die specifieke vorm van de vervalcurve kunt voorspellen.

Een heel bijzondere structuur om de toestandsdichtheid te bëınvloeden is een
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Figuur 5.: Een 1D fotonisch kristal heeft een zich herhalende structuur in 1 richt-
ing, maar blijft in de andere richtingen constant. Een 2D kristal in
het midden heeft ook een periodieke structuur in een tweede richting.
In een 3D kristal verandert het patroon in alle drie de richtingen.

fotonisch kristal. Dit is een periodiek herhalende structuur waarbij de periode
van de orde van golflengte van licht is. Deze structuren moeten extreem precies
zijn op een kleinere schaal dan de lichtgolflengte. Daarom worden deze structuren
gefabriceerd in een speciale clean room, een extreem stofvrije ruimte, omdat stof
desastreuze gevolgen zou hebben. In figuur 5 staan voorbeelden van een fotonisch
kristal met een herhalende structuur in 1, 2 en 3 dimensies. Zo’n structuur kan
je zien als allemaal kleine spiegels, die het interferentie effect zoals bijvoorbeeld
in een zeepvlies optreedt sterker maken. In een 3D kristal is het mogelijk niet
alleen in 1 richting interferentie te krijgen maar in alle 3 de richtingen. Hierdoor
wordt in fotonische kristallen de toestandsdichtheid extreem bëınvloed. Het is
zelfs mogelijk om volledige destructieve interferentie te veroorzaken, zodat er
helemaal géén fluctuaties meer optreden. Binnenin een fotonisch kristal is het
stiller dan in een vacuüm! Dit betekent dat als een lichtbron in zo’n fotonisch
kristal in een hogere energie toestand zit, het niet naar de grond toestand vervalt
via spontane emissie. De levensduur wordt oneindig lang. Dit golflengte gebied
waar volledige destructieve interferentie optreedt wordt een fotonische bandkloof
genoemd.

In hoofdstuk 5 worden experimenten beschreven waarbij lichtbronnen in een
fotonisch kristal met een bandkloof worden gestopt. Inderdaad vinden we dat
binnenin deze bandkloof de levensduur aanzienlijk langer wordt. De lichtbron
houdt zijn energie tot 11 keer langer vast omdat er veel minder fluctuaties van
het elektromagnetisch veld aanwezig zijn die zorgen dat de lichtbron vervalt.
Voor andere fotonische kristallen waarbij de lichtbron niet binnen de bandkloof
uitzendt wordt de levensduur juist korter, omdat hier de interferentie constructief
is en er meer fluctuaties aanwezig zijn.

In hoofdstuk 6 is onderzocht of het ook mogelijk is om de levensduur te veran-
deren in fotonische kristallen waarbij maar in 2 van de 3 richtingen een periodieke
structuur is aangebracht. Deze structuren zijn namelijk aanzienlijk makkelijker
te fabriceren. In deze structuren blijken de interferentieverschijnselen niet sterk
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genoeg om de levensduur te veranderen. Wel is gevonden dat het licht een andere
kant wordt opgestuurd binnen het kristal. Aan een kant komt meer licht naar
buiten, aan de andere kant juist minder.

In hoofdstuk 7 tenslotte is weer een heel andere nano structuur gebruikt. De
lichtbronnen zijn hier geplaatst tussen heel dunne draden. De straal van de
draden is veel kleiner dan de golflengte van het licht. De draden zijn willekeurig
geplaatst ten opzichte van elkaar. Dit zorgt ervoor dat licht tussen deze draden
zo vaak wordt verstrooid dat het de weg kwijt raakt en een dronkemanswandeling
door de laag maakt. Hierbij wordt het licht diffuus. Over de invloed van diffusie
op de toestandsdichtheid is nog niet veel bekend. We hebben gevonden dat de
levensduur van lichtbronnen tussen nanodraden vooral wordt bëınvloed door de
straal van de nanodraden. Effecten van de meervoudige verstrooiing van het
licht hebben wij niet gevonden hoewel deze effecten wel voorspeld worden in de
literatuur. Mogelijk kunnen wij deze effecten niet zien omdat we naar heel veel
lichtbronnen tegelijk kijken, zodat het effect wordt uitgemiddeld.

In het onderzoek in dit proefschrift hebben we aangetoond dat de spontane
emissie van lichtbronnen kan worden beheerst door de omgeving van de lichtbron
te veranderen. Zowel het effect van de plaats van de lichtbron ten opzichte van
de nanostructuur, de golflengte van het licht en de trillingsrichting van het licht
zijn onderzocht.
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